Impact of Fabricated Nanoparticles on the Rhizospheric Microorganisms and Soil Environment

  • Mokula Mohammed Raffi
  • Azamal Husen


The use of nanoparticles (NPs), i.e., particles of 1–100 nanometers in size with a surrounding interfacial layer, is gaining momentum in commerce, and their increased production and utilization makes the agriculture risk assessment rational. They may enter the environment as fertilizers or pesticides or through waste streams, accidental spills, and construction material. It is important to understand how the increased nanoparticle concentration in the environment may influence viability of crops and soil microorganisms in the rhizosphere, i.e., the area around a plant root that is inhabited by a unique population of microorganisms influenced by the root exudates. It involves interactions between plant roots, soil microbes, and plant pathogens. Soil microorganisms play a very significant role in maintaining the soil ecosystem, soil health, and plant productivity. These rhizospheric microorganisms and plant roots are influenced, positively as well as negatively, by fabricated NPs, but the information on this aspect is still limited. Here is an effort to elucidate the positive and negative (toxic) influences of different NPs on plants and the rhizospheric microorganisms.


Nanoparticles Rhizosphere Soil microorganisms Plant root Plant growth 


  1. Akhilesh BG, Shrivastava P, Privastava P, Pahu P (2013) Effect of recklessly disposed silver nanoparticles from laboratory on Vigna radiata, Brassica juncea, rhizosphere flora and drosophila melanogaster. Int J Pharm Bio Sci 4:590–601Google Scholar
  2. Allard P, Darnajoux R, Phalyvong K, Bellenger JP (2013) Effects of tungsten and titanium oxide nanoparticles on the diazotrophic growth and metals acquisition by Azotobacter vinelandii under molybdenum limiting condition. Environ Sci Technol 47:2061–2068PubMedCrossRefPubMedCentralGoogle Scholar
  3. Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bandyopadhyay S, Peralta-Videa JR (2012) Comparative toxicity assessment of CeO2 and ZnO nanoparticles towards Sinorhizobium meliloti, a symbiotic alfalfa associated bacterium: use of advanced microscopic and spectroscopic techniques. J Hazard Mater 241:379–386PubMedCrossRefPubMedCentralGoogle Scholar
  5. Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857CrossRefPubMedPubMedCentralGoogle Scholar
  6. Battke F, Leopold K, Maier M, Schmidhalter U, Schuster M (2008) Palladium exposure of barley: uptake and effects. Plant Biol 10:272–276PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bhatia S (2016) Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Natural polymer drug delivery systems: nanoparticles, plants, and algae. Springer International Publishing, Switzerland, pp 33–93Google Scholar
  8. Biswas P, Wu CY (2005) Critical review, nanoparticles and the environment. J Air Waste Manag Assoc 55:708–746PubMedCrossRefPubMedCentralGoogle Scholar
  9. Burns RG, Deforest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234CrossRefGoogle Scholar
  10. Caldwell BA (2005) Enzyme activities as a component of soil biodiversity: a review. Pedobiologia 49:637–644CrossRefGoogle Scholar
  11. Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and non functionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931PubMedCrossRefPubMedCentralGoogle Scholar
  12. Cao C, Huang J, Cai W, Yan C, Liu J, Jiang Y (2016) Effects of silver nanoparticles on soil enzyme activity of different wetland plant soil systems, soil and sediment contamination. An In J 26:558–556Google Scholar
  13. Cao C, Huang J, Cai WS, Yan CN, Liu JL, Jiang YD (2017) Effects of silver nanoparticles on soil enzyme activity of different wetland plant soil systems. Soil Sediment Contam Int J. Scholar
  14. Chen Q, Wang H, Yang B, He F, Han X, Song Z (2015) Responses of soil ammonia- oxidizing microorganisms to repeated exposure of single-walled and multi-walled carbon nanotubes. Sci Total Environ 505:649–657PubMedCrossRefPubMedCentralGoogle Scholar
  15. Cherchi C, Gu A (2010) Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilis. Environ Sci Technol 44:8302–8307PubMedCrossRefPubMedCentralGoogle Scholar
  16. Choi O, Deng KK, Kim NJ, Ross L, Surampalli RY, Hu ZQ (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chung H, Son Y, Yoon TK, Kim S, Kim W (2011) The effect of multi-walled carbon nanotubes on soil microbial activity. Ecotoxicol Environ Saf 74:569–575PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chung H, Kim MJ, Ko K, Kim JH, Kwon HA, Hong I (2015) Effects of graphene oxides on soil enzyme activity and microbial biomass. Sci Total Environ 514:307–313PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cullen LG, Tilston EL, Mitchell GR, Collins CD, Shaw LJ (2011) Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: particle reactivity inter- feres with assay conditions and interpretation of genuine microbial effects. Chemosphere 82:1675–1682PubMedCrossRefPubMedCentralGoogle Scholar
  20. Das P, Williams CJ, Fulthorpe RR, Hoque ME, Metcalfe CD, Xenopoulos MA (2012) Changes in bacterial community structure after exposure to silver nanoparticles in natural waters. Environ Sci Technol 46:9120–9128PubMedCrossRefPubMedCentralGoogle Scholar
  21. Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173–174:19–27CrossRefGoogle Scholar
  22. Doshi R, Braida W, Christodoulatos C, Wazne M, O’Connor G (2008) Nano-aluminum: transport through sand columns and environmental effects on plants and soil communities. Environ Res 106:296–303PubMedCrossRefPubMedCentralGoogle Scholar
  23. Du WC, Sun YY, Ji R, Zhu JG, Wu JC, Guo HY (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828PubMedCrossRefPubMedCentralGoogle Scholar
  24. Dubchak S, Ogar A, Mietelski JW, Turnau K (2010) Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Span J Agric Res 8:S103–S108CrossRefGoogle Scholar
  25. El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49PubMedCrossRefPubMedCentralGoogle Scholar
  26. Fan R, Huang YC, Grusak MA, Huang CP, Sherrier DJ (2014) Effects of nano-TiO2 on the agronomically-relevant Rhizobium-legume symbiosis. Sci Total Environ 466–467:503–512PubMedCrossRefPubMedCentralGoogle Scholar
  27. Fang J, Lyon DY, Wiesner MR, Dong J, Alvarez PJJ (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41:2636–2642PubMedCrossRefPubMedCentralGoogle Scholar
  28. Feng Y, Cui X, He S, Dong G, Chen M, Wang J, Lin X (2013) The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol 47:9496–9504PubMedCrossRefPubMedCentralGoogle Scholar
  29. Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One 8:e84441Google Scholar
  30. Gao F, Liu C, Qu C, Zheng L, Yang F, Su M, Hong F (2008) Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase. Biometals 21:211–217PubMedCrossRefPubMedCentralGoogle Scholar
  31. Garcia A, Delgado L, Tora JA, Casals E, Gonzalez E, Puntes V, Font X, Carrera J, Sanchez A (2012) Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J Hazard Mater 199:64–72PubMedCrossRefPubMedCentralGoogle Scholar
  32. Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 8:6749–6758CrossRefGoogle Scholar
  33. González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueño MC, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195PubMedCrossRefPubMedCentralGoogle Scholar
  34. Goodman J, Mclean JE, Britt DW, Anderson AJ (2016) Sublethal doses of ZnO nanoparticles remodel production of cell signaling metabolites in the root colonizer Pseudomonas chlororaphis O6. Environ Sci: Nano 3:1103–1113Google Scholar
  35. Gowramma B, Keerthi U, Rafi M, Rao DM (2015) Biogenic silver nanoparticles production and characterization from native strain of Corynebacterium species and its antimicrobial activity. 3 Biotech 5:195–201PubMedCrossRefPubMedCentralGoogle Scholar
  36. Gurunathan S (2015) Cytotoxicity of graphene oxide nanoparticles on plant growth promoting rhizobacteria. J Ind Eng Chem 32:282–291CrossRefGoogle Scholar
  37. Hajipour MJ, Fromm KM, Ashkarran AA, De Aberasturi D, De Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511PubMedCrossRefPubMedCentralGoogle Scholar
  38. Haris Z, Ahmad I (2017) Impact of metal oxide nanoparticles on beneficial soil microorganisms and their secondary metabolites. Int J Life Sci Scienti Res 3:1020–1030Google Scholar
  39. Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 321:7–14CrossRefGoogle Scholar
  40. He S, Feng Y, Ren H, Zhang Y, Gu N, Lin X (2011) The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J Soil Sediment 11:1408–1417CrossRefGoogle Scholar
  41. He S, Feng Y, Ni J, Sun Y, Xue L, Feng Y, Yu Y, Lin X, Yang L (2016) Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere 147:195–202PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hemida SK, Omar SA, Abdel-Mallek AY (1997) Microbial populations and enzyme activity in soil treated with heavy metals. Water Air Soil Pollut 95:13–22Google Scholar
  43. Hiltner L (1904) Under neuere Erfahrungen und probleme auf dem Gebiet der Bodenbaketriologie und unter besonderer Berucksichtingung der Grundungung und Brache. Arb Dtsch Landw Ges 98:59–78Google Scholar
  44. Husen A (2017) Gold Nanoparticles from plant system: synthesis, characterization and their application. In: Ghorbanpour M, Manika K, Varma A (eds) Nanoscience and plant–soil systems, vol 48. Springer, Cham, pp 455–479Google Scholar
  45. Husen A, Siddiqi KS (2014a) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnology 12:16PubMedPubMedCentralCrossRefGoogle Scholar
  46. Husen A, Siddiqi KS (2014b) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9:229PubMedPubMedCentralCrossRefGoogle Scholar
  47. Husen A, Siddiqi KS (2014c) Plants and microbes assisted selenium nanoparticles: characterization and application. J Nanobiotechnology 12:28PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hussein AK (2016) Applications of nanotechnology to improve the performance of solar collectors – recent advances and overview. Renew Sust Energ Rev 62:767–792CrossRefGoogle Scholar
  49. Jackson P, Jacobsen NR, Baun A, Birkedal R, Kuhnel D, Jensen KA, Vogel U, Wallin H (2013) Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Cent J 7:154PubMedPubMedCentralCrossRefGoogle Scholar
  50. Jiang F, Shen Y, Ma C, Zhang X, Cao W, Rui Y (2017) Effects of TiO2nanoparticles on wheat (Triticum aestivum L.) seedlings cultivated under super-elevated and normal CO2 conditions. PLoS One 12(5):e0178088PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jin L, Son Y, Yoon TK, Kang YJ, Kim W, Chung H (2013) High concentrations of single- walled carbon nanotubes lower soil enzyme activity and microbial biomass. Ecotoxicol Environ Saf 88:9–15PubMedCrossRefPubMedCentralGoogle Scholar
  52. Johansen A, Pedersen AL, Jensen KA, Karlson U, Hansen BM, Scott-Fordsmand JJ, Winding A (2008) Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environ Toxicol Chem 27:1895–1903PubMedCrossRefPubMedCentralGoogle Scholar
  53. Judy JD, McNear DH, Chen C, Lewis RW, Tsyusko OV, Bertsch PM, Rao W, Stegemeier J, Lowry GV, McGrath SP, Durenkamp M, Unrine JM (2015) Nanomaterials in biosolids inhibit nodulation, shift microbial community composition, and result in increased metal uptake relative to bulk/dissolved metals. Environ Sci Technol 49:8751–8758PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673PubMedCrossRefPubMedCentralGoogle Scholar
  55. Karimi E, Fard EM (2017) Nanomaterial effects on soil microorganisms. In: Ghorbanpour M, Khanuja M, Varma A (eds.) Nanoscience and plant–soil systems, vol 48, Springer, Cham, pp 137–200Google Scholar
  56. Karunakaran G, Suriyaprabha R, Manivasakan P, Yuvakkumar R, Rajendran V, Kannan N (2013) Impact of nano and bulk ZrO2, TiO2 particles on soil nutrient contents and PGPR. J Nanosci Nanotechnol 13:678–685PubMedCrossRefPubMedCentralGoogle Scholar
  57. Karunakaran G, Suriyaprabha R, Manivasakan P, Rajendran V, Kannan N (2014) Influence of nano and bulk SiO2 and Al2O3 particles on PGPR and soil nutrient contents. Curr Nanosci 10:604–612CrossRefGoogle Scholar
  58. Kennedy AC, Smith KL (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170:75–86CrossRefGoogle Scholar
  59. Kerfahi D, Tripathi BM, Singh D, Kim H, Lee S, Lee J, Adams JM (2015) Effects of functionalized and raw multi-walled carbon nanotubes on soil bacterial community composition. PLoS One 10:e0123042PubMedPubMedCentralCrossRefGoogle Scholar
  60. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227PubMedPubMedCentralCrossRefGoogle Scholar
  61. Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123PubMedCrossRefPubMedCentralGoogle Scholar
  62. Kumar P, Kumar A, Fernandes T, Ayoko GA (2014) Nanomaterials and the environment. J Nanomater 2014:528606Google Scholar
  63. Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302PubMedPubMedCentralCrossRefGoogle Scholar
  66. Larue C, Khodja H, Herlin-Boime N, Brisset F, Flank AM, Fayard B, Chaillou S, Carrière M (2011) Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. J Phys Conf Ser 304:012057CrossRefGoogle Scholar
  67. Lee W, An Y, Yoon H, Kweon H (2008a) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant uptake for water insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921PubMedCrossRefPubMedCentralGoogle Scholar
  68. Lee WM, An YJ, Yoon H, Kweon HS (2008b) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921PubMedCrossRefPubMedCentralGoogle Scholar
  69. Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675PubMedPubMedCentralCrossRefGoogle Scholar
  70. Li B, Chen Y, Liang W, Mu L, Bridges WC, Jacobson AR, Darnault CJG (2017) Influence of cerium oxide nanoparticles on the soil enzyme activities in a soil-grass microcosm system. Geoderma 299:54–62CrossRefGoogle Scholar
  71. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250PubMedPubMedCentralGoogle Scholar
  72. Lin D, Xing B (2008) Root Uptake and Phytotoxicity of ZnO Nanoparticles. Environ Sci Technol 42:5580–5585PubMedCrossRefPubMedCentralGoogle Scholar
  73. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132PubMedCrossRefPubMedCentralGoogle Scholar
  74. Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010PubMedCrossRefPubMedCentralGoogle Scholar
  75. Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279PubMedCrossRefPubMedCentralGoogle Scholar
  76. Majumdar S, Peralta-Videa JR, Trujillo-Reyes J, Sun Y, Barrios AC, Niu G, Flores-Margez JP, Gardea-Torresdey JL (2016) Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles. Sci Total Environ 569–570:201–211PubMedCrossRefPubMedCentralGoogle Scholar
  77. Manjunatha SB, Biradar DP, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. J Farm Sci 29:1–13Google Scholar
  78. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859PubMedCrossRefPubMedCentralGoogle Scholar
  79. Mazumdar H, Ahmed GU (2011) Phytotoxicity effect of silver nanoparticles on Oryza sativa. Int J Chem Tech Res 3:1494–1500Google Scholar
  80. Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54PubMedCrossRefPubMedCentralGoogle Scholar
  81. Moll J, Klingenfuss F, Widmer F, Gogos A, Bucheli TD, Hartmann M, van der Heijden MGA (2017) Effects of titanium dioxide nanoparticles on soil microbial communities and wheat biomass. Soil Biol Biochem 111:85–93CrossRefGoogle Scholar
  82. Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172PubMedPubMedCentralCrossRefGoogle Scholar
  83. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386PubMedCrossRefPubMedCentralGoogle Scholar
  84. Petersen EJ, Henry TB, Zhao J, Maccuspie RI, Kirschling TL, Dobrovolskaia MA, Hackley V, Xing B, White JC (2014) Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements. Environ Sci Technol 48:4226–4246PubMedPubMedCentralCrossRefGoogle Scholar
  85. Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Raja Reddy K, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:906–927CrossRefGoogle Scholar
  86. Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Gelb J, Walker SL, Nisbet RM, An YJ, Schimel JP, Palmer RG, Hernandez-Viezcas JA, Zhao L, Gardea-Torresdey JL, Holden PA (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci U S A 109:E2451–E2456PubMedPubMedCentralCrossRefGoogle Scholar
  87. Raliya R, Biswas P, Tarafdar JC (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol Rep 5:22–26CrossRefGoogle Scholar
  88. Rangaraj S, Gopalu K, Muthusamy P, Rathinam Y, Venkatachalam R, Narayanasamy K (2014) Augmented biocontrol action of silica nanoparticles and Pseudomonas fluorescens bioformulant in maize (Zea mays L.). RSC Adv 4:8461–8465CrossRefGoogle Scholar
  89. Rico CM, Morales MI, Barrios AC, McCreary R, Hong J, Lee WY, Nunez J, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61:11278–11285PubMedCrossRefPubMedCentralGoogle Scholar
  90. Rodrigues DF, Jaisi DP, Elimelech M (2013) Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil. Environ Sci Technol 47:625–633PubMedCrossRefPubMedCentralGoogle Scholar
  91. Rostami AA, Shahsavar A (2009) Nano-silver particles eliminate the in vitro contaminations of olive mission explants. Asian J Plant Sci 8:505–509CrossRefGoogle Scholar
  92. Santimano MC, Kowshik M (2013) Altered growth and enzyme expression profile of ZnO nanoparticles exposed non-target environmentally beneficial bacteria. Environ Monit Assess 185:7205–7214PubMedCrossRefPubMedCentralGoogle Scholar
  93. Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vis 2:61–68Google Scholar
  94. Seeger EM, Baun A, Kästner M, Trapp S (2009) Insignificant acute toxicity of TiO2 nanoparticles to willow trees. J Soil Sediment 9:46–53CrossRefGoogle Scholar
  95. Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148CrossRefGoogle Scholar
  96. Shah V, Jones J, Dickman J, Greenman S (2014) Response of soil bacterial community to metal nanoparticles in biosolids. J Hazard Mater 274:399–403PubMedCrossRefPubMedCentralGoogle Scholar
  97. Shan J, Ji R, Yu Y, Xie Z, Yan X (2015) Biochar, activated carbon, and carbon nanotubes have different effects on fate of 14C-catechol and microbial community in soil. Sci Rep 5:16000PubMedPubMedCentralCrossRefGoogle Scholar
  98. Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47CrossRefGoogle Scholar
  99. Shcherbakova EN, Shcherbakov A, Andronov EE, Gonchar LN, Kalenskaya SM, Chebotar VK (2016) Combined pre-seed treatment with microbial inoculants and Mo nanoparticles changes composition of root exudates and rhizosphere microbiome structure of chickpea (Cicer arietinum L) plants. Symbiosis 73:57–69CrossRefGoogle Scholar
  100. Shen Z, Chen Z, Hou Z, Li T, Lu X (2015) Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Front Environ Sci Eng 9:912–918CrossRefGoogle Scholar
  101. Shin YJ, Kwak JI, An YJ (2012) Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere 88:524–529PubMedCrossRefPubMedCentralGoogle Scholar
  102. Shrestha B, Acosta-Martinez V, Cox SB, Green MJ, Li S, Canas-Carrell JE (2013) An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning. J Hazard Mater 261:188–197PubMedCrossRefPubMedCentralGoogle Scholar
  103. Siddiqi KS, Husen A (2016a) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett 11:98PubMedPubMedCentralCrossRefGoogle Scholar
  104. Siddiqi KS, Husen A (2016b) Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects. Nanoscale Res Lett 11:363PubMedPubMedCentralCrossRefGoogle Scholar
  105. Siddiqi KS, Husen A (2016c) Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res Lett 11:482PubMedPubMedCentralCrossRefGoogle Scholar
  106. Siddiqi KS, Husen A (2016d) Engineered gold nanoparticles and plant adaptation potential. Nanoscale Res Lett 11:400PubMedPubMedCentralCrossRefGoogle Scholar
  107. Siddiqi KS, Husen A (2017a) Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elem Med Biol 40:10–23CrossRefGoogle Scholar
  108. Siddiqi KS, Husen A (2017b) Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12:92PubMedPubMedCentralCrossRefGoogle Scholar
  109. Siddiqi KS, Rahman A, Tajuddin, Husen A (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nanoscale Res Lett 11:498PubMedPubMedCentralCrossRefGoogle Scholar
  110. Siddiqi KS, Husen A, Rao RAK (2018a) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnology 16:14PubMedPubMedCentralCrossRefGoogle Scholar
  111. Siddiqi KS, Rahman A, Tajuddin, Husen A (2018b) Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett 13:141PubMedPubMedCentralCrossRefGoogle Scholar
  112. Siddiqi KS, Husen A, Sohrab SS, Osman M (2018c) Recent status of nanomaterials fabrication and their potential applications in neurological disease management. Nanoscale Res Lett 13:231PubMedPubMedCentralCrossRefGoogle Scholar
  113. Siddiqi KS, Rashid M, Rahman A, Tajuddin, Husen A, Rehman S (2018d) Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity. Biomat Res 22:23Google Scholar
  114. Simonet BM, Valcarcel M (2009) Monitoring nanoparticles in the environment. Anal Bioanal Chem 393:17–21PubMedCrossRefPubMedCentralGoogle Scholar
  115. Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res 22:13710–13723CrossRefGoogle Scholar
  116. Simonin M, Richaume A, Guyonnet JP, Dubost A, Martins JMF, Pommier T (2016) Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Sci Rep 2016:33643CrossRefGoogle Scholar
  117. Speranza A, Leopold K, Maier M, Taddei AR, Scoccianti V (2010) Pd-nanoparticles cause increased toxicity to kiwifruit pollen compared to soluble Pd(II). Environ Pollut 158:873–882PubMedCrossRefPubMedCentralGoogle Scholar
  118. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol l43:9473–9479CrossRefGoogle Scholar
  119. Su M, Liu H, Liu C, Qu C, Zheng L, Hong F (2009) Promotion of nano-anatase TiO2 on the spectral responses and photochemical activities of D1/D2/Cyt b559 complex of spinach. Spectrochim Acta Part A Mol Biomol Spectrosc 72:1112–1116CrossRefGoogle Scholar
  120. Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76PubMedCrossRefPubMedCentralGoogle Scholar
  121. Sweet MJ, Singleton I (2015) Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots. J Nanopart Res 17:448PubMedPubMedCentralCrossRefGoogle Scholar
  122. Tan XM, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487CrossRefGoogle Scholar
  123. Thul ST, Sarangi BK (2015) Implications of nanotechnology on plant productivity and its rhizospheric environment. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotech- nology and plant sciences. Springer, Cham, pp 37–54Google Scholar
  124. Tomacheski DM, Pittol DN, Simões VF, Ribeiro RMC, Santana (2017) Impact of silver ions and silver nanoparticles on the plant growth and soil microorganisms. Global J Environ Sci Manage 3:341–350Google Scholar
  125. Tong Z, Bischoff M, Nies L, Applegate B, Turco RF (2007) Impact of fullerene (C60) on a soil microbial community. Environ Sci Technol 41:2985–2991PubMedCrossRefPubMedCentralGoogle Scholar
  126. Tong Z, Bischoff M, Nies LF, Myer P, Applegate B, Turco RF (2012) Response of soil microorganisms to as-produced and functionalized single-wall carbon nanotubes (SWNTs). Environ Sci Technol 46:13471–13479PubMedCrossRefPubMedCentralGoogle Scholar
  127. Tong ZH, Bischoff M, Nies LF, Carroll NJ, Applegate B, Turco RF (2016) Influence of fullerene (C60) on soil bacterial communities: aqueous aggregate size and solvent co-introduction effects. Sci Rep 6:28069PubMedPubMedCentralCrossRefGoogle Scholar
  128. Tripathi DK, Tripathi A, Shweta SS, Singh Y, Vishwakarma K, Yadav G, Sharma S, Singh VK, Mishra RK, Upadhyay RG, Dubey NK, Lee Y, Chauhan DK (2017) Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8:07PubMedPubMedCentralGoogle Scholar
  129. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780PubMedPubMedCentralCrossRefGoogle Scholar
  130. Wang H, Law N, Pearson G, van Dongen BE, Jarvis RM, Goodacre R, Lloyd JR (2010) Impact of silver (I) on the metabolism of Shewanella oneidensis. J Bacteriol 192:1143–1150PubMedCrossRefPubMedCentralGoogle Scholar
  131. Wang J, Shu K, Zhang l SY (2017) Effects of silver nanoparticles on soil microbial communities and bacterial nitrification in suburban vegetable soils. Pedosphere 27:482–490CrossRefGoogle Scholar
  132. Wild E, Jones KC (2009) Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol 43:5290–5294PubMedCrossRefPubMedCentralGoogle Scholar
  133. Xu C, Peng C, Sun L, Zhang S, Huang H, Chen Y, Shi J (2015) Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem 86:24–33CrossRefGoogle Scholar
  134. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132PubMedCrossRefPubMedCentralGoogle Scholar
  135. Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nanoanatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88PubMedCrossRefPubMedCentralGoogle Scholar
  136. Yuan Z, Li J, Cui L, Xu B, Zhang H, Yu CP (2013) Interaction of silver nanoparticles with pure nitrifying bacteria. Chemosphere 90:1404–1411PubMedCrossRefPubMedCentralGoogle Scholar
  137. Zheng X, Chen YG, Wu R (2011) Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge. Environ Sci Technol 45:7284–7290PubMedCrossRefPubMedCentralGoogle Scholar
  138. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mokula Mohammed Raffi
    • 1
  • Azamal Husen
    • 2
  1. 1.Department of Natural Resource Management, College of Agriculture and Rural TransformationUniversity of GondarGondarEthiopia
  2. 2.Department of Biology, College of Natural and Computational SciencesUniversity of GondarGondarEthiopia

Personalised recommendations