Skip to main content
  • 412 Accesses

Abstract

Literature review of the non-destructive testing and evaluation methods and microwave and millimeter wave imaging techniques is provided. A detailed discussion and challenges for antennas are presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, S. S., Schiessl, A., Gumbmann, F., Tiebout, M., Methfessel, S., & Schmidt, L. (2012). Advanced microwave imaging. IEEE Microwave Magazine, 13, 26–43.

    Article  Google Scholar 

  • Akinci, M. N., Caglayan, T., Ozgur, S., Alkasi, U., Ahmadzay, H., Abbak, M., Cayoren, M., & Akduman, I. (2015). Qualitative microwave imaging with scattering parameters measurements. IEEE Transactions on Microwave Theory and Techniques, 63, 2730–2740.

    Article  Google Scholar 

  • Ashraf, M., Haraz, O., Sebak, A., & Alshebeili, S. (2015). Wideband compact Vivaldi antenna loaded with dielectric lens for millimeter-wave applications. In 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, pp. 2061–2062.

    Google Scholar 

  • Bai, J., Shi, S., & Prather, D. W. (2011). Modified compact antipodal Vivaldi antenna for 4–50-GHz UWB application. IEEE Transactions on Microwave Theory and Techniques, 59, 1051–1057.

    Article  Google Scholar 

  • Bois, K. J., Handjojo, L. F., Benally, A. D., Mubarak, K., & Zoughi, R. (1999). Dielectric plug-loaded two-port transmission line measurement technique for dielectric property characterization of granular and liquid materials. IEEE Transactions on Instrumentation and Measurement, 48, 1141–1148.

    Article  Google Scholar 

  • Bourqui, J., Okoniewski, M., & Fear, E. C. (2010). Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging. IEEE Transactions on Antennas and Propagation, 58, 2318–2326.

    Article  Google Scholar 

  • Case, J. T., Ghasr, M. T., & Zoughi, R. (2011). Optimum two-dimensional uniform spatial sampling for microwave SAR-based NDE imaging systems. IEEE Transactions on Instrumentation and Measurement, 60, 3806–3815.

    Article  Google Scholar 

  • De Oliveira, A. M., Perotoni, M. B., Kofuji, S. T., & Justo, J. F. (2015). A palm tree antipodal Vivaldi antenna with exponential slot edge for improved radiation pattern. IEEE Antennas and Wireless Propagation Letters, 14, 1334–1337.

    Article  Google Scholar 

  • Ebnabbasi, K., Sczyslo, S., & Mohebbi, M. (2013). UWB performance of coplanar tapered slot antennas. IEEE Antennas and Wireless Propagation Letters, 12, 749–752.

    Article  Google Scholar 

  • Gazit, E. (1988). Improved design of the Vivaldi antenna. In IEE Proceedings H (Microwaves, Antennas and Propagation). IET, pp. 89–92.

    Article  MathSciNet  Google Scholar 

  • Ghasr, M. T., Kharkovsky, S., Zoughi, R., & Austin, R. (2005). Comparison of near-field millimeter-wave probes for detecting corrosion precursor pitting under paint. IEEE Transactions on Instrumentation and Measurement, 54, 1497–1504.

    Article  Google Scholar 

  • Ghasr, M. T., Carroll, B., Kharkovsky, S., Austin, R., & Zoughi, R. (2006). Millimeter wave differential probe for nondestructive detection of corrosion precursor pitting. IEEE Transactions on Instrumentation and Measurement, 55, 1620–1627.

    Article  Google Scholar 

  • Ghasr, M. T., Abou-Khousa, M. A., Kharkovsky, S., Zoughi, R., & Pommerenke, D. (2012). Portable real-time microwave camera at 24 GHz. IEEE Transactions on Antennas and Propagation, 60, 1114–1125.

    Article  Google Scholar 

  • Ghasr, M. T., Kharkovsky, S., Bohnert, R., Hirst, B., & Zoughi, R. (2013). 30 GHz linear high-resolution and rapid millimeter wave imaging system for NDE. IEEE Transactions on Antennas and Propagation, 61, 4733–4740.

    Article  Google Scholar 

  • Gibson, P. (1979). The Vivaldi aerial. In 9th European Microwave Conference, 1979. IEEE, pp. 101–105.

    Google Scholar 

  • Greenberg, M. C., Virga, K. L., & Hammond, C. L. (2003). Performance characteristics of the dual exponentially tapered slot antenna (DETSA) for wireless communications applications. IEEE Transactions on Vehicular Technology, 52, 305–312.

    Article  Google Scholar 

  • Hatfield, S., Hillstrom, M., Schultz, D., Werckmann, T., Ghasr, M., & Donnell, K. (2013). UWB microwave imaging array for nondestructive testing applications. In 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, pp. 1502–1506.

    Google Scholar 

  • Hughes, D., & Zoughi, R. (2005). A novel method for determination of dielectric properties of materials using a combined embedded modulated scattering and near-field microwave techniques-part I: Forward model. IEEE Transactions on Instrumentation and Measurement, 54, 2389–2397.

    Article  Google Scholar 

  • Juan, L., Guang, F., Lin, Y., & Demin, F. (2013). A modified balanced antipodal Vivaldi antenna with improved radiation characteristics. Microwave and Optical Technology Letters, 55, 1321–1325.

    Article  Google Scholar 

  • Kanjaa, M., Mrabet, O. E., Khalladi, M., & Essaaidi, M. (2015). Exponentially tapered antipodal Vivaldi antenna for breast cancer detection. In 2015 IEEE 15th Mediterranean Microwave Symposium (MMS). IEEE, pp. 1–3.

    Google Scholar 

  • Kharkovsky, S., & Zoughi, R. (2007). Microwave and millimeter wave nondestructive testing and evaluation-overview and recent advances. IEEE Instrumentation and Measurement Magazine, 10, 26–38.

    Article  Google Scholar 

  • Kharkovsky, S. N., Akay, M. F., Hasar, U. C., & ATIS, C. D. (2002). Measurement and monitoring of microwave reflection and transmission properties of cement-based specimens. IEEE Transactions on Instrumentation and Measurement, 51, 1210–1218.

    Article  Google Scholar 

  • Kharkovsky, S., Case, J. T., Abou-Khousa, M. A., Zoughi, R., & Hepburn, F. L. (2006). Millimeter-wave detection of localized anomalies in the space shuttle external fuel tank insulating foam. IEEE Transactions on Instrumentation and Measurement, 55, 1250–1257.

    Article  Google Scholar 

  • Kharkovsky, S., Ghasr, M. T., Kam, K., Abou-Khousa, M. A., & Zoughi, R. (2013). Out-of plane fed elliptical slot array for microwave imaging. IEEE Transactions on Antennas and Propagation, 61, 5311–5314.

    Article  Google Scholar 

  • Klemm, M., Leendertz, J., Gibbins, D., Craddock, I. J., Preece, A., & Benjamin, R. (2010). Microwave radar-based differential breast cancer imaging: Imaging in homogeneous breast phantoms and low contrast scenarios. IEEE Transactions on Antennas and Propagation, 58, 2337–2344.

    Article  Google Scholar 

  • Leeper, D. G. (2003). Ultrawideband-the next step in short-range wireless. In IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2003. IEEE, pp. 493–496.

    Google Scholar 

  • Li, L., Xia, X., Liu, Y., & Yang, T. (2016). Wideband balanced antipodal Vivaldi antenna with enhanced radiation parameters. Progress in Electromagnetics Research C, 66, 163–171.

    Article  Google Scholar 

  • Lubecke, V. M., Boric-Lubecke, O., Host-Madsen, A., & Fathy, A. E. (2007). Through-the-wall radar life detection and monitoring. In 2007 IEEE/MTT-S International Microwave Symposium. IEEE, pp. 769–772.

    Google Scholar 

  • Molaei, A., Kaboli, M., Mirtaheri, S. A., & Abrishamian, M. S. (2014). Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications. IET Microwaves, Antennas and Propagation, 8, 1137–1142.

    Article  Google Scholar 

  • Moosazadeh, M., Ghobadi, C., & Dousti, M. (2010). Small monopole antenna with checkered-shaped patch for UWB application. IEEE Antennas and Wireless Propagation Letters, 9, 1014–1017.

    Article  Google Scholar 

  • Muqaibel, A. H., & Safaai-Jazi, A. (2003). A new formulation for characterization of materials based on measured insertion transfer function. IEEE Transactions on Microwave Theory and Techniques, 51, 1946–1951.

    Article  Google Scholar 

  • Nassar, I. T., & Weller, T. M. (2015). A novel method for improving antipodal Vivaldi antenna performance. IEEE Transactions on Antennas and Propagation, 63, 3321–3324.

    Article  Google Scholar 

  • Natarajan, R., George, J. V., Kanagasabai, M., & Shrivastav, A. K. (2015). A compact antipodal Vivaldi antenna for UWB applications. IEEE Antennas and Wireless Propagation Letters, 14, 1557–1560.

    Article  Google Scholar 

  • Natarajan, R., George, J. V., Kanagasabai, M., Lawrance, L., Moorthy, B., Rajendran, D. B., & Alsath, M. G. N. (2016). Modified antipodal Vivaldi antenna for ultra-wideband communications. IET Microwaves, Antennas and Propagation, 10, 401–405.

    Article  Google Scholar 

  • Pastorino, M. (2010). Microwave imaging. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Porcino, D., & Hirt, W. (2003). Ultra-wideband radio technology: Potential and challenges ahead. IEEE Communications Magazine, 41, 66–74.

    Article  Google Scholar 

  • Pozar, D. M. (2012). Microwave engineering. New York: Addison-Wesley.

    Google Scholar 

  • Qing, X., Chen, Z. N., & Chia, M. Y. W. (2008). Parametric study of ultra-wideband dual elliptically tapered antipodal slot antenna. International Journal of Antennas and Propagation, 2008, 267197.

    Article  Google Scholar 

  • Ralston, T. S., Charvat, G. L., & Peabody, J. E. (2010). Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system. In 2010 IEEE International Symposium on Phased Array Systems and Technology (ARRAY). IEEE, pp. 551–558.

    Google Scholar 

  • Rodenbeck, C. T., Kim, S.-G., Tu, W.-H., Coutant, M. R., Hong, S., Li, M., & Chang, K. (2005). Ultra-wideband low-cost phased-array radars. IEEE Transactions on Microwave Theory and Techniques, 53, 3697–3703.

    Article  Google Scholar 

  • Roqueta, G., Jofre, L., & Feng, M. Q. (2012). Analysis of the electromagnetic signature of reinforced concrete structures for nondestructive evaluation of corrosion damage. IEEE Transactions on Instrumentation and Measurement, 61, 1090–1098.

    Article  Google Scholar 

  • Sagnard, F., & Zein, G. E. (2005). In situ characterization of building materials for propagation modeling: Frequency and time responses. IEEE Transactions on Antennas and Propagation, 53, 3166–3173.

    Article  Google Scholar 

  • Shaari, A., Millard, S., & Bungey, J. (2004). Modelling the propagation of a radar signal through concrete as a low-pass filter. NDT and E International, 37, 237–242.

    Article  Google Scholar 

  • Sheen, D. M., McMakin, D. L., & Hall, T. E. (2001). Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Transactions on Microwave Theory and Techniques, 49, 1581–1592.

    Article  Google Scholar 

  • Shrestha, S., Kharkovsky, S., Zoughi, R., & Hepburn, F. (2005). Microwave and millimeter wave nondestructive testing of the space shuttle external tank insulating foam. Materials Evaluation, 63, 339–344.

    Google Scholar 

  • Shull, P. J. (2002). Nondestructive evaluation: Theory, techniques, and applications. New York: CRC press.

    Book  Google Scholar 

  • Shuppert, B. (1988). Microstrip/slot-line transitions: Modeling and experimental investigation. IEEE Transactions on Microwave Theory and Techniques, 36, 1272–1282.

    Article  Google Scholar 

  • Yang, Y., & Fathy, A. E. (2009). Development and implementation of a real-time see-through-wall radar system based on FPGA. IEEE Transactions on Geoscience and Remote Sensing, 47, 1270–1280.

    Article  Google Scholar 

  • Yarovoy, A. G., Savelyev, T. G., Aubry, P. J., Lys, P. E., & Ligthart, L. P. (2007). UWB array-based sensor for near-field imaging. IEEE Transactions on Microwave Theory and Techniques, 55, 1288–1295.

    Article  Google Scholar 

  • Yeh, C.-Y., & Zoughi, R. (1994). A novel microwave method for detection of long surface cracks in metals. IEEE Transactions on Instrumentation and Measurement, 43, 719–725.

    Article  Google Scholar 

  • Ying, Q., & Dou, W. (2013). Simulation of two compact antipodal Vivaldi antennas with Radiation Characteristics enhancement. In 2013 Proceedings of the International Symposium on Antennas & Propagation (ISAP). IEEE, pp. 523–526.

    Google Scholar 

  • Zhuge, X., & Yarovoy, A. (2010). Design of low profile antipodal Vivaldi antenna for ultrawideband near-field imaging. In Proceedings of the Fourth European Conference on Antennas and Propagation. IEEE, pp. 1–5.

    Google Scholar 

  • Zhuge, X., & Yarovoy, A. G. (2011). A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection. IEEE Transactions on Geoscience and Remote Sensing, 49, 509–518.

    Article  Google Scholar 

  • Zwick, T., Wiesbeck, W., Timmermann, J., & Adamiuk, G. (2013). Ultra-wideband RF system engineering. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moosazadeh, M. (2019). Literature Review. In: Antipodal Vivaldi Antennas for Microwave Imaging of Construction Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-030-05566-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05566-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05565-3

  • Online ISBN: 978-3-030-05566-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics