Sauerbrey, J., Schmitt-Landsiedel, D., & Thewes, R. (2003). A 0.5-V 1-/spl mu/W successive approximation ADC. IEEE Journal of Solid-State Circuits, 38(7), 1261–1265.
CrossRef
Google Scholar
Steingart, D. (2009). Power sources for wireless sensor networks. In S. Priya & D. Inman (Eds.), Energy harvesting technologies (pp. 267–286). New York: Springer.
CrossRef
Google Scholar
Knight, C., Davidson, J., & Behrens, S. (2008). Energy options for wireless sensor nodes. Sensors, 8(12), 8037–8066.
CrossRef
Google Scholar
Paradiso, J. A., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4(1), 18–27.
CrossRef
Google Scholar
Xie, J., Chengkuo, L., & Hanhua, F. (2010). Design, fabrication, and characterization of CMOS MEMS-based thermoelectric power generators. Journal of Microelectromechanical Systems, 19(2), 317–324.
CrossRef
Google Scholar
Roundy, S., Wright, P. K., & Rabaey, J. (2003). A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, 26(11), 1131–1144.
CrossRef
Google Scholar
Hudak, N. S., & Amatucci, G. G. (2008). Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion. Journal of Applied Physics, 103, 101301.
CrossRef
Google Scholar
Zhou, S. X., & Zuo, L. (2018). Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Communications in Nonlinear Science and Numerical Simulation, 61, 271–284.
MathSciNet
CrossRef
Google Scholar
Chen, G. J., Li, Y. F., Xiao, H. M., & Zhu, X. (2017). A micro-oscillation-driven energy harvester based on a flexible bipolar electret membrane with high output power. Journal of Materials Chemistry A, 5, 4150–4155.
CrossRef
Google Scholar
Halim, M. A., et al. (2018). An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion. Applied Energy, 217, 66–74.
CrossRef
Google Scholar
Zhang, X., et al. (2018). Broad bandwidth vibration energy harvester based on thermally stable wavy fluorinated ethylene propylene electret films with negative charges. Journal of Micromechanics and Microengineering, 28, 065012.
CrossRef
Google Scholar
Wang, Z. L. (2013). Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 7(11), 9533–9557.
CrossRef
Google Scholar
Roundy, S., Wright, P. K., & Pister, K. S. (2002). Micro-electrostatic vibration-to-electricity converters. Fuel Cells (methanol), 220(22), 1–10.
Google Scholar
Sakane, Y., Suzuki, Y., & Kasagi, N. (Oct 2008). The development of a high-performance perfluorinated polymer electret and its application to micro power generation. Journal of Micromechanics and Microengineering, 18(10), 104011.
CrossRef
Google Scholar
Boisseau, S., Duret, A.-B., Chaillout, J.-J., & Despesse, G. (2012). New DRIE-patterned electrets for vibration energy harvesting. In EPJ Web of Conferences (Vol. 33, p. 02010). EDP Sciences. Les Ulis, France.
CrossRef
Google Scholar
Tao, K., Liu, S., Lye, S. W., Miao, J., & Hu, X. (2014). A three-dimensional electret-based micro power generator for low-level ambient vibrational energy harvesting. Journal of Micromechanics and Microengineering, 24(6), 065022.
CrossRef
Google Scholar
Tao, K., Miao, J., Lye, S. W., & Hu, X. (2015). Sandwich-structured two-dimensional MEMS electret power generator for low-level ambient vibrational energy harvesting. Sensors and Actuators A: Physical, 228, 95–103.
CrossRef
Google Scholar
Tao, K., Lye, S. W., Miao, J., Tang, L., & Hu, X. (2015). Out-of-plane electret-based MEMS energy harvester with the combined nonlinear effect from electrostatic force and a mechanical elastic stopper. Journal of Micromechanics and Microengineering, 25(10), 104014.
CrossRef
Google Scholar
Tao, K., Lye, S. W., Miao, J., & Hu, X. (2015). Design and implementation of an out-of-plane electrostatic vibration energy harvester with dual-charged electret plates. Microelectronic Engineering, 135(0), 32–37.
CrossRef
Google Scholar
Tao, K., Wu, J., Tang, L., Hu, L., Lye, S. W., & Miao, J. (2017). Enhanced electrostatic vibrational energy harvesting using integrated opposite-charged electrets. Journal of Micromechanics and Microengineering, 27(4), 044002.
CrossRef
Google Scholar
Tao, K., Tang, L. H., Wu, J., Lye, S. W., Chang, H. L., & Miao, J. M. (2018). Investigation of multimodal electret-based MEMS energy harvester with impact-induced nonlinearity. Journal of Microelectromechanical Systems, 27(2), 276–288.
CrossRef
Google Scholar
Williams, C. B., & Yates, R. B. (Mar-Apr 1996). Analysis of a micro-electric generator for microsystems. Sensors and Actuators a-Physical, 52(1–3), 8–11.
CrossRef
Google Scholar
Tao, K., Ding, G., Wang, P., Yang, Z., & Wang, Y. (2012). Fully integrated micro electromagnetic vibration energy harvesters with micro-patterning of bonded magnets. Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference on, 2012, pp. 1237–1240.
Google Scholar
Tao, K., Wu, J., Kottapalli, A. G. P., et al. (2017). Micro-patterning of resin-bonded NdFeB magnet for a fully integrated electromagnetic actuator. Solid-State Electronics, 138, 66–72.
CrossRef
Google Scholar
Tao, K., Wu, J., Tang, L., et al. (2016). A novel two-degree-of-freedom MEMS electromagnetic vibration energy harvester. Journal of Micromechanics and Microengineering, 26(3), 035020.
CrossRef
Google Scholar
Davino, D. Kinetic energy harvesting by magnetostrictive materials. Available: http://www.sigmaaldrich.com/technical-documents/articles/materials-science/kinetic-energy-harvesting.html
Ueno, T. (2015). Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications. Journal of Applied Physics, 117, 17A740.
CrossRef
Google Scholar
Lee, B., Lin, S., Wu, W., Wang, X., Chang, P., & Lee, C. (2009). Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film. Journal of Micromechanics and Microengineering, 19(6), 065014.
CrossRef
Google Scholar
Wang, P. H., et al. (2018). Complementary electromagnetic-triboelectric active Sensor for detecting multiple mechanical triggering. Advanced Functional Materials, 1705808, 1–9.
Google Scholar
Liu, H., Zhang, S., Kathiresan, R., Kobayashi, T., & Lee, C. (2012). Development of piezoelectric microcantilever flow sensor with wind-driven energy harvesting capability. Applied Physics Letters, 100(22), 223905–223903.
CrossRef
Google Scholar
Xuefeng, H., Zhengguo, S., Yaoqing, C., & You, Z. (2013). A micromachined low-frequency piezoelectric harvester for vibration and wind energy scavenging. Journal of Micromechanics and Microengineering, 23(12), 125009.
CrossRef
Google Scholar
Qi, Y., Kim, J., Nguyen, T. D., Lisko, B., Purohit, P. K., & McAlpine, M. C. (2011). Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Letters, 11(3), 1331–1336.
CrossRef
Google Scholar
Wang, Z. L., & Song, J. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312(5771), 242–246.
CrossRef
Google Scholar
Xu, S., Lao, C., Weintraub, B., & Wang, Z. L. (2008). Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces. Journal of Materials Research, 23(8), 2072–2077.
CrossRef
Google Scholar
Hu, Y., Xu, C., Zhang, Y., Lin, L., Snyder, R. L., & Wang, Z. L. (2011). A nanogenerator for energy harvesting from a rotating tire and its application as a self-powered pressure/speed sensor. Advanced Materials, 23(35), 4068–4071.
CrossRef
Google Scholar
Lee, M., Bae, J., Lee, J., Lee, C.-S., Hong, S., & Wang, Z. L. (2011). Self-powered environmental sensor system driven by nanogenerators. Energy & Environmental Science, 4(9), 3359–3363.
CrossRef
Google Scholar
Chang, C., Tran, V. H., Wang, J., Fuh, Y.-K., & Lin, L. (2010). Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Letters, 10(2), 726–731.
CrossRef
Google Scholar
Zhou, Y. S., et al. (2014). Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification. Advanced Materials, 26(11), 1719–1724.
CrossRef
Google Scholar
Lin, L., et al. (2013). Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Letters, 13(6), 2916–2923.
CrossRef
Google Scholar
Lin, L., Wang, S., Niu, S., Liu, C., Xie, Y., & Wang, Z. L. (2014). Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Applied Materials & Interfaces, 6(4), 3031–3038.
CrossRef
Google Scholar
Fan, F.-R., Lin, L., Zhu, G., Wu, W., Zhang, R., & Wang, Z. L. (2012). Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Letters, 12(6), 3109–3114.
CrossRef
Google Scholar
Lin, L., et al. (2013). Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano, 7(9), 8266–8274.
CrossRef
Google Scholar
Zhu, G., et al. (2014). Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Letters, 14(6), 3208–3213.
CrossRef
Google Scholar
Yang, J., Chen, J., Liu, Y., Yang, W., Su, Y., & Wang, Z. L. (2014). Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano, 8(3), 2649–2657.
CrossRef
Google Scholar
Yu, A., et al. (2015). Self-powered acoustic source locator in underwater environment based on organic film triboelectric nanogenerator. Nano Research, 8(3), 765–773.
CrossRef
Google Scholar
Lin, Z. H., et al. (2013). A self-powered triboelectric nanosensor for mercury ion detection. Angewandte Chemie International Edition, 52(19), 5065–5069.
CrossRef
Google Scholar
Li, Z., et al. (2015). β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy & Environmental Science, 8(3), 887–896.
CrossRef
Google Scholar