Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSINTELL))

  • 193 Accesses

Abstract

In the literature there are some published works where the authors use the predatory prey mathematical model, to model problems, but the main difference of our proposal against the existing works is that we propose an optimization algorithm, which is iterative and applying evolution processes to improve the adaptation to the habitat that belongs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duffy, B., Schouten, A., & Raaijmakers, J. M. (2003). Pathogen self-defense: Mechanisms to counteract microbial antagonism. Annual Review of Phytopathology, 41(1), 501–538.

    Article  Google Scholar 

  2. García-Garrido, J. M., & Ocampo, J. A. (2002). Regulation of the plant defense response in arbuscular mycorrhizal symbiosis. Journal of Experimental Botany, 53(373), 1377–1386.

    Article  Google Scholar 

  3. Bennett, R. N., & Wallsgrove, R. M. (1994). Secondary metabolites in plant defense mechanisms. New Phytologist, 127(4), 617–633.

    Article  Google Scholar 

  4. Berryman, A. A. (1992). The origins and evolution of predator-prey theory. Ecology, 73(5), 1530–1535.

    Article  Google Scholar 

  5. Neyoy, H., Castillo, O., & Soria, J. (2013). Dynamic fuzzy logic parameter tuning for ACO and its application in TSP problems. Recent advances on hybrid intelligent systems (pp. 259–271). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  6. Olivas, F., Valdez, F., & Castillo, O. (2015). Dynamic parameter adaptation in ant colony optimization using a fuzzy system for TSP problems. In IFSA-EUSFLAT (pp. 765–770).

    Google Scholar 

  7. Olivas, F., Valdez, F., Castillo, O., Gonzalez, C. I., Martinez, G., & Melin, P. (2017). Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Applied Soft Computing, 53, 74–87.

    Article  Google Scholar 

  8. Peraza, C., Valdez, F., Garcia, M., Melin, P., & Castillo, O. (2016). A new fuzzy harmony search algorithm using fuzzy logic for dynamic parameter adaptation. Algorithms, 9(4), 69.

    Article  MathSciNet  Google Scholar 

  9. Pérez, J., Valdez, F., & Castillo, O. (2017). Modification of the bat algorithm using type-2 fuzzy logic for dynamical parameter adaptation. Nature-inspired design of hybrid intelligent systems (pp. 343–355). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  10. Perez, J., Valdez, F., Castillo, O., & Roeva, O. (2016, September). Bat algorithm with parameter adaptation using interval type-2 fuzzy logic for benchmark mathematical functions. In 2016 IEEE 8th International Conference on Intelligent Systems (IS) (pp. 120–127). IEEE.

    Google Scholar 

  11. Perez, J., Valdez, F., Castillo, O., Melin, P., Gonzalez, C., & Martinez, G. (2017). Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm. Soft Computing, 21(3), 667–685.

    Article  Google Scholar 

  12. Vivanco, J. M., Cosio, E., Loyola-Vargas, V. M., & Flores, H. E. (2005). Mecanismos químicos de defensa en las plantas. Investigación y ciencia, 341(2), 68–75.

    Google Scholar 

  13. Wang, M. B., & Metzlaff, M. (2005). RNA silencing and antiviral defense in plants. Current Opinion in Plant Biology, 8(2), 216–222.

    Article  Google Scholar 

  14. Pieterse, C. M., & Dicke, M. (2007). Plant interactions with microbes and insects: From molecular mechanisms to ecology. Trends in Plant Science, 12(12), 564–569.

    Article  Google Scholar 

  15. Song, G. C., & Ryu, C. M. (2013). Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. International Journal of Molecular Sciences, 14(5), 9803–9819.

    Article  Google Scholar 

  16. Tollsten, L., & Muller, P. M. (1996). Volatile organic compounds emitted from beech leaves. Phytochemistry, 43, 759–762.

    Article  Google Scholar 

  17. Molina, D., & Herrera, F. (2015, May). Iterative hybridization of DE with local search for the CEC’2015 special session on large scale global optimization. In 2015 IEEE congress on evolutionary computation (CEC) (pp. 1974–1978). IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo Caraveo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caraveo, C., Valdez, F., Castillo, O. (2019). Theory and Background. In: A New Bio-inspired Optimization Algorithm Based on the Self-defense Mechanism of Plants in Nature. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-05551-6_2

Download citation

Publish with us

Policies and ethics