Role of the Gut Microbiome in Autism Spectrum Disorders

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1118)


Autism spectrum disorder (ASD) is a severe neurodevelopmental or neuropsychiatric disorder with elusive etiology and obscure pathophysiology. Cognitive inabilities, impaired communication, repetitive behavior pattern, and restricted social interaction and communication lead to a debilitating situation in autism. The pattern of co-occurrence of medical comorbidities is most intriguing in autism, compared to any other neurodevelopmental disorders. They have an elevated comorbidity burden among which most frequently are seizures, psychiatric illness, and gastrointestinal disorders. The gut microbiota is believed to play a pivotal role in human health and disease through involvement in physiological homoeostasis, immunological development, glutathione metabolism, amino acid metabolism, etc., which in a reasonable way explain the role of gut-brain axis in autism. Branded as a neurodevelopmental disorder with psychiatric impairment and often misclassified as a mental disorder, many experts in the field think that a therapeutic solution to autism is unlikely to emerge. As the pathophysiology is still elusive, taking into account of the various symptoms that are concurrent in autism is important. Gastrointestinal problems that are seen associated with most of the autism cases suggest that it is not just a psychiatric disorder as many claim but have a physiological base, and alleviating the gastrointestinal problems could help alleviating the symptoms by bringing out the much needed overall improvement in the affected victims. A gut disorder akin to Crohn’s disease is, sometimes, reported in autistic children, an extremely painful gastrointestinal disease which is named as autistic enterocolitis. This disturbed situation hypothesized to be initiated by dysbiosis or microbial imbalance could in turn perturb the coordination of microbiota-gut-brain axis which is important in human mental health as goes the popular dictum: “fix your gut, fix your brain.”


Autism spectrum disorder (ASD) Gastrointestinal problems Microbial dysbiosis Gut-brain axis 


  1. 1.
    Lederberg J, McCray AT (2001) Ome SweetOmics--A Genealogical Treasury of Words. The Scientist 15(7):8–8Google Scholar
  2. 2.
    Turnbaugh PJ, Gordon JI (2009) The core gut microbiome, energy balance and obesity. J Physiol 587(17):4153–4158PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65PubMedPubMedCentralGoogle Scholar
  4. 4.
    Glendinning L, Free A (2013) Supra-organismal interactions in the human intestine. Front Cell Infect Microbiol 4:47–47Google Scholar
  5. 5.
    Walker AW, Lawley TD (2013) Therapeutic modulation of intestinal dysbiosis. Pharmacol Res 9(1):75–86CrossRefGoogle Scholar
  6. 6.
    Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11(4):227–238PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Wang Y, Kasper LH (2014) The role of microbiome in central nervous system disorders. Brain Behav Immun 38:1–12PubMedCrossRefGoogle Scholar
  8. 8.
    Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immun 9(5):313–323CrossRefGoogle Scholar
  9. 9.
    Collins SM, Bercik P (2009) The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 136(6):2003–2014PubMedCrossRefGoogle Scholar
  10. 10.
    Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J et al (2012) Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol 8(7):e1002606. Scholar
  11. 11.
    MacDonald TT, Monteleone G (2005) Immunity inflammation and allergy in the gut. Science 307(5717):1920–1925PubMedCrossRefGoogle Scholar
  12. 12.
    Finegold SM, Molitoris D, Song Y, Liu C, Vaisanen ML, Bolte E et al (2002) Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 35(Supplement 1):S6–S16PubMedCrossRefGoogle Scholar
  13. 13.
    Hume G, Radford-Smith GL (2002) The pathogenesis of Crohn's disease in the 21st century. Pathology-Abingdon 34(6):561–567Google Scholar
  14. 14.
    McGarr SE, Ridlon JM, Hylemon PB (2005) Diet anaerobic bacterial metabolism and colon cancer: a review of the literature. J Clin Gastroenterol 39(2):98–109PubMedGoogle Scholar
  15. 15.
    Hartstra AV, Bouter KE, Bäckhed F, Nieuwdorp M (2015) Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 38(1):159–165PubMedCrossRefGoogle Scholar
  16. 16.
    Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W et al (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Carding S, Verbeke K, Vipond DT, Corfe BM, Owen L (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 26.
  18. 18.
    Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain–gut–enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6(5):306–314PubMedCrossRefGoogle Scholar
  19. 19.
    Sudo N (2014) Microbiome HPA axis and production of endocrine hormones in the gut. Adv Exp Med Biol 817:177–194PubMedCrossRefGoogle Scholar
  20. 20.
    Lyte M (2004) Microbial endocrinology and infectious disease in the 21st century. Trends Microbiol 12(1):14–20PubMedCrossRefGoogle Scholar
  21. 21.
    Hughes DT, Sperandio V (2008) Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6(2):111–120PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Mayer EA, Tillisch K, Gupta A (2015) Gut/brain axis and the microbiota. J Clin Invest 125(3):926–938PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Barbara G, Stanghellini V, Brandi G, Cremon C, Di Nardo G, De Giorgio R et al (2005) Interactions between commensal bacteria and gut sensorimotor function in health and disease. Am J Gastroenterol 100(11):2560–2568PubMedCrossRefGoogle Scholar
  24. 24.
    Clarke G, Grenham S, Scully P, Fitzgeral P, Moloney RD, Shanahan F et al (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18(6):666–673PubMedCrossRefGoogle Scholar
  25. 25.
    Abrams GD, Bishop JE (1967) Effect of the normal microbial flora on gastrointestinal motility. Proc Soc Exp Biol Med 126(1):301–304PubMedCrossRefGoogle Scholar
  26. 26.
    Iwai H, Ishihara Y, Yamanaka J, Ito T (1973) Effects of bacterial flora on cecal size and transit rate of intestinal contents in mice. Jpn J Exp Med 43(4):297–305PubMedGoogle Scholar
  27. 27.
    Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291(5505):881–884PubMedCrossRefGoogle Scholar
  28. 28.
    Carabotti M, Scirocco A, Maselli MA, Severi C (2015) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28(2):203–209PubMedPubMedCentralGoogle Scholar
  29. 29.
    Eisenhofer G, Kopin IJ, Goldstein DS (2004) Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 56(3):331–349PubMedCrossRefGoogle Scholar
  30. 30.
    Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K (2012) Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol-Gastrointest Liver Physiol 303(11):G1288–G1295PubMedCrossRefGoogle Scholar
  31. 31.
    Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S et al (2011) Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A 108(19):8030–8035PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Reigstad CS, Salmonson CE, Rainey JF, Szurszewski JH, Linden DR, Sonnenburg JL et al (2015) Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 29(4):1395–1403PubMedCrossRefGoogle Scholar
  33. 33.
    Stefanko DP, Barrett RM, Ly AR, Reolon GK, Wood MA (2009) Modulation of long-term memory for object recognition via HDAC inhibition. Proc Natl Acad Sci U S A 106(23):9447–9452PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Uribe A, Alam M, Johansson O, Midtvedt T, Theodorsson E (1994) Microflora modulates endocrine cells in the gastrointestinal mucosa of the rat. Gastroenterology 107(5):1259–1269PubMedCrossRefGoogle Scholar
  35. 35.
    Galley JD, Nelson MC, Yu Z, Dowd SE, Walter J, Kumar PS et al (2014) Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol 14(1):189. Scholar
  36. 36.
    Guthrie GD, Nicholson-Guthrie CS (1989) gamma-Aminobutyric acid uptake by a bacterial system with neurotransmitter binding characteristics. Proc Natl Acad Sci U S A 86(19):7378–7381PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Macfarlane S, Dillon JF (2007) Microbial biofilms in the human gastrointestinal tract. J Appl Microbiol 102(5):1187–1196PubMedCrossRefGoogle Scholar
  38. 38.
    Rubio CA, Huang CB (1991) Quantification of the sulphomucin-producing cell population of the colonic mucosa during protracted stress in rats. In Vivo 6(1):81–84Google Scholar
  39. 39.
    Gue M, Peeters T, Depoortere I, Vantrappen G, Bueno L (1989) Stress-induced changes in gastric emptying, postprandial motility, and plasma gut hormone levels in dogs. Gastroenterology 97(5):1101–1107PubMedCrossRefGoogle Scholar
  40. 40.
    Gue M, Junien JL, Bueno L (1991) Conditioned emotional response in rats enhances colonic motility through the central release of corticotropin-releasing factor. Gastroenterology 100(4):964–970PubMedCrossRefGoogle Scholar
  41. 41.
    Schaedler RW, Dubos RJ (1962) The fecal flora of various strains of mice. Its bearing on their susceptibility to endotoxin. J Exp Med 115(6):1149–1160PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Bailey MT, Coe CL (1999) Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev Psychobiol 35(2):146–155PubMedCrossRefGoogle Scholar
  43. 43.
    Gaykema RP, Goehler LE, Lyte M (2004) Brain response to cecal infection with Campylobacter jejuni: analysis with Fos immunohistochemistry. Brain Behav Immun 18(3):238–245PubMedCrossRefGoogle Scholar
  44. 44.
    Lyte M, Li W, Opitz N, Gaykema RP, Goehler LE (2006) Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiol Behav 89(3):350–357PubMedCrossRefGoogle Scholar
  45. 45.
    Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang X et al (2010) Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139(6):2102–2112PubMedCrossRefGoogle Scholar
  46. 46.
    Ohland CL, Kish L, Bell H, Thiesen A, Hotte N, Pankiv E et al (2013) Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology 38(9):1738–1747PubMedCrossRefGoogle Scholar
  47. 47.
    Jepson B, Johnson J (2007) Changing the course of autism: A scientific approach for parents and physicians. 1st edn, Sentient Publications Boulder. ISBN-10: 1591810612Google Scholar
  48. 48.
    Williams BL, Hornig M, Parekh T, Lipkin WI (2012) Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. MBio 3(1).
  49. 49.
    Parracho HM, Bingham MO, Gibson GR, McCartney AL (2005) Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 54(10):987–991PubMedCrossRefGoogle Scholar
  50. 50.
    Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA (2011) Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterol 11(1):22.
  51. 51.
    Ming X, Brimacombe M, Chaaban J, Zimmerman-Bier B, Wagner GC (2008) Autism spectrum disorders: concurrent clinical disorders. J Child Neurol 23(1):6–13CrossRefGoogle Scholar
  52. 52.
    Valicenti-McDermott M, McVicar K, Rapin I, Wershil BK, Cohen H, Shinnar S (2006) Frequency of gastrointestinal symptoms in children with autistic spectrum disorders and association with family history of autoimmune disease. J Dev Behav Pediatr 27(2):S128–S136PubMedCrossRefGoogle Scholar
  53. 53.
    Wakefield AJ, Murch SH, Anthony A, Linnell J, Casson DM, Malik M et al (1998) Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet 352(9123):234–235Google Scholar
  54. 54.
    Wakefield AJ, Puleston JM, Montgomery SM, Anthony A, O'leary JJ, Murch SH (2002) The concept of entero-colonic encephalopathy, autism and opioid receptor ligands. Aliment Pharmacol Ther 16(4):663–674PubMedCrossRefGoogle Scholar
  55. 55.
    d'Eufemia P, Celli M, Finocchiaro R, Pacifico L, Viozzi L, Zaccagnini M et al (1996) Abnormal intestinal permeability in children with autism. Acta Paediatr 85(9):1076–1079PubMedCrossRefGoogle Scholar
  56. 56.
    Horvath K, Perman JA (2002) Autistic disorder and gastrointestinal disease. Cur Opin Pediatr 14(5):583–587CrossRefGoogle Scholar
  57. 57.
    Sharp WG, Jaquess DL, Lukens CT (2013) Multi-method assessment of feeding problems among children with autism spectrum disorders. Autism Spectr Disord 7(1):56–65CrossRefGoogle Scholar
  58. 58.
    Field D, Garland M, Williams K (2003) Correlates of specific childhood feeding problems. J Paediatr Child Health 39(4):299–304PubMedCrossRefGoogle Scholar
  59. 59.
    Shaw W (2010) Increased urinary excretion of a 3-(3-hydroxyphenyl)-3-hydroxypropionic acid (HPHPA), an abnormal phenylalanine metabolite of Clostridia spp. in the gastrointestinal tract, in urine samples from patients with autism and schizophrenia. Nutr Neurosci 13(3):135–143PubMedCrossRefGoogle Scholar
  60. 60.
    Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaug J, Knight R et al (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 108(Supplement 1):4578–4585PubMedCrossRefGoogle Scholar
  61. 61.
    Song Y, Liu C, Finegold SM (2004) Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol 70(11):6459–6465PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Sandler RH, Finegold SM, Bolte ER, Buchanan CP, Maxwell AP, Väisänen ML et al (2000) Short-term benefit from oral vancomycin treatment of regressive-onset autism. JChild Neurol 15(7):429–435CrossRefGoogle Scholar
  63. 63.
    Elsden SR, Hilton MG (1978) Volatile acid production from threonine, valine, leucine and isoleucine by clostridia. Arch Microbiol 117(2):165–172PubMedCrossRefGoogle Scholar
  64. 64.
    Shultz SR, MacFabe DF, Ossenkopp KP, Scratch S, Whelan J, Taylor R et al (2008) Intracerebroventricular injection of propionic acid, an enteric bacterial metabolic end-product, impairs social behavior in the rat: implications for an animal model of autism. Neuropharmacology 54(6):901–911PubMedCrossRefGoogle Scholar
  65. 65.
    Pulikkan J, Maji A, Dhakan DB, Saxena R, Mohan B, Anto MM et al (2018) Gut microbial dysbiosis in Indian children with autism spectrum disorders. Microb Ecol 76(4):1102–1114PubMedCrossRefGoogle Scholar
  66. 66.
    Kang DW, Park JG, Ilhan ZE, Wallstrom G, LaBaer J, Adams JB et al (2013) Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 8(7):e68322. Scholar
  67. 67.
    Dillon SM, Lee EJ, Kotter CV, Austin GL, Dong Z, Hecht DK et al (2014) An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal Immunol 7(4):983–994PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK (2009) Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci 106(34):14728–14733PubMedCrossRefGoogle Scholar
  69. 69.
    Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Patterson PH (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155(7):1451–1463PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A, Serrazzanetti DI et al (2013) Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One 8(10):e76993. Scholar
  71. 71.
    Dickerson AS, Rahbar MH, Bakian AV, Bilder DA, Harrington RA, Pettygrove S et al (2016) Autism spectrum disorder prevalence and associations with air concentrations of lead, mercury, and arsenic. Environ Monit Assess 188(7):407.
  72. 72.
    Adams JB, Audhya T, McDonough-Means S, Rubin RA, Quig D, Geis E et al (2013) Toxicological status of children with autism vs. neurotypical children and the association with autism severity. Biol Trace Elem Res 151(2):171–180PubMedCrossRefGoogle Scholar
  73. 73.
    Breton J, Daniel C, Dewulf J, Pothion S, Froux N, Sauty M et al (2013) Gut microbiota limits heavy metals burden caused by chronic oral exposure. Toxicol Lett 222(2):132–138PubMedCrossRefGoogle Scholar
  74. 74.
    Meyer J, Michalke K, Kouril T, Hensel R (2008) Volatilisation of metals and metalloids: an inherent feature of methanoarchaea? Syst Appl Microbiol 31(2):81–87PubMedCrossRefGoogle Scholar
  75. 75.
    Dostal A, Fehlbaum S, Chassard C, Zimmermann MB, Lacroix C (2013) Low iron availability in continuous in vitro colonic fermentations induces strong dysbiosis of the child gut microbial consortium and a decrease in main metabolites. FEMS Microbiol Ecol 83(1):161–175PubMedCrossRefGoogle Scholar
  76. 76.
    Reed S, Neuman H, Moscovich S, Glahn RP, Koren O, Tako E (2015) Chronic zinc deficiency alters chick gut microbiota composition and function. Nutrients 7(12):9768–9784PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Smith JC, McDaniel EG, McBean LD, Doft FS, Halsted JA (1972) Effect of microorganisms upon zinc metabolism using germfree and conventional rats. J Nutr 102(6):711–719PubMedCrossRefGoogle Scholar
  78. 78.
    Pieper R, Vahjen W, Neumann K, Van Kessel AG, Zentek J (2012) Dose-dependent effects of dietary zinc oxide on bacterial communities and metabolic profiles in the ileum of weaned pigs. J Anim Physiol Anim Nutr 96(5):825–833CrossRefGoogle Scholar
  79. 79.
    Vahjen W, Pieper R, Zentek J (2010) Bar-coded pyrosequencing of 16S rRNA gene amplicons reveals changes in ileal porcine bacterial communities due to high dietary zinc intake. Appl Environ Microbiol 76(19):6689–6691PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Højberg O, Canibe N, Poulsen HD, Hedemann MS, Jensen B (2005) Influence of dietary zinc oxide and copper sulfate on the gastrointestinal ecosystem in newly weaned piglets. Appl Environ Microbiol 71(5):2267–2277PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF (2003) The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 66(8):1499–1503PubMedCrossRefGoogle Scholar
  82. 82.
    Mardinogl A, Shoaie S, Bergentall M, Ghaffari P, Zhang C, Larsson E et al (2015) The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol Syst Biol 11(10):834. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of GenomicsCentral University of KeralaKasaragodIndia
  2. 2.Division of BiologyKansas State UniversityManhattanUSA

Personalised recommendations