Skip to main content

Inductive Machine Learning with Image Processing for Objects Detection of a Robotic Arm with Raspberry PI

  • Conference paper
  • First Online:
Book cover Technology Trends (CITT 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 895))

Included in the following conference series:

Abstract

Goals. The present study was designed to build a prototyping and develop algorithms that allow the detection, classification, and movement of objects of a robotic arm of 4 DOF with the following technologies: ArmUno arm structure, Raspberry Pi 3 B+, PiCam 2.1, driver PCA9685 for servomotors, Opencv3, and python. Another goal was to measure the effectiveness of prediction and classification of objects photographed by the robotic arm, using machine learning with the KNN classifier method.

Methodology. The generation of a dataset of 800 photographic images was proposed, in 4 categories: volumetric geometric shapes conformed by 200 images each one of them. With this, processing techniques were applied to the image captured by the camera to detect the object in the image: Grayscale filtering, Gaussian filtering, and threshold.

Then, the characteristics of the object were obtained through the first two invariant moments of HU, and finally, the machine learning method KNN was applied to predict, that the image captured by the robotic arm belongs or not to a certain category. In this way, the robotic arm decides to move the object or not.

Results. According to the plot of the obtained data described in the results section; the level of correct answers increases markedly by using the techniques described above. The prediction and classification using KNN were remarkable, For all the tests carried out The average effectiveness of KNN method was 95.42%. Once the scripts were integrated, the operation of the robotic arm was satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma, J., et al.: IOP Conference Series: Materials Science and Engineering, vol. 263, p. 052049 (2017)

    Google Scholar 

  2. Anandhalli, M., Baligar, V.P.: A novel approach in real-time vehicle detection and tracking using Raspberry Pi. Alexandria Eng. J. 57, 1597–1607 (2017). https://doi.org/10.1016/j.aej.2017.06.008. ISSN 1110-0168

    Google Scholar 

  3. Vazquez Navarro, D.: Control of a robotic arm using an Omega 2+ module. Thesis, Universitat Politècnica de Catalunya (2018)

    Google Scholar 

  4. Rahman, M.F., Patterson, D., Cheok, A., Betz, R.: 30 - motor drives. In: Rashid, M.H. (ed.) Power Electronics Handbook, 4th edn, pp. 945–1021. Butterworth-Heinemann, Oxford (2018). https://doi.org/10.1016/B978-0-12-811407-0.00034-9. ISBN 978-0-12-811407-0

    Google Scholar 

  5. Perumal, V.S.A., Baskaran, K., Rai, S.K.: Implementation of effective and low-cost building monitoring system (BMS) using Raspberry PI. Energy Proc. 143, 179–185 (2017). https://doi.org/10.1016/j.egypro.2017.12.668. ISSN 1876-6102

    Google Scholar 

  6. Soriano, A., Marn, L., Valls, M., Valera, A., Albertos, P.: Low cost platform for automatic control education based on open hardware. IFAC Proc. Vol. 47(3), 9044–9050 (2014). https://doi.org/10.3182/20140824-6-ZA-1003.01909. ISSN 1474-6670

    Google Scholar 

  7. Di Piazza, M.C., Pucci, M.: Techniques for efficiency improvement in PWM motor drives. Electr. Power Syst. Res. 136, 270–280 (2016). ISSN 0378-7796

    Google Scholar 

  8. Soriano, A., Marin, L., Valles, M., Valera, A., Albertos, P.: Low cost platform for automatic control education based on open hardware. IFAC Proc. Vol. 47(3), 9044–9050 (2014). ISSN 1474-6670, ISBN 9783902823625

    Google Scholar 

  9. Beyeler, M.: Machine Learning for OpenCV. Intelligent Image Processing with Python, 1st edn. Packt Publishing, Birmingham (2017). ISBN 978-1-78398-028-4

    Google Scholar 

  10. Muller, A.C., Guido, S.: Introduction to Machine Learning with Python, Kindle edn. O’Reilly Media, Sebastopol (2017). ISBN 978-1-449-36941-5

    Google Scholar 

  11. Monk, S.: Raspberry Pi CookBook, 2nd edn. O’Reilly Media, Sebastopol (2016). ISBN 978-1-491-93910-9

    Google Scholar 

  12. Yoon, D.C., Mol, A., Benn, D.K., Benavides, E.: Digital radio-graphic image processing and analysis. Dent. Clin. North Am. 62(3), 341–359 (2018). https://doi.org/10.1016/j.cden.2018.03.001. ISSN 0011-8532, ISBN 9780323610766

    Google Scholar 

  13. Tlach, V., Kuric, I., Kumicakova, D., Rengevic, A.: Possibilities of a robotic end of arm tooling control within the software platform ROS. Proc. Eng. 192, 875–880 (2017). https://doi.org/10.1016/j.proeng.2017.06.151. 12th International Scientific Conference of Young Scientists on Sustainable, Modern and Safe Transport. ISSN 1877-7058

    Google Scholar 

  14. Makris, S., et al.: Dual arm robot in cooperation with humans for flexible assembly. CIRP Ann. 66(1), 13–16 (2017). https://doi.org/10.1016/j.cirp.2017.04.097. ISSN 0007-8506

    Google Scholar 

  15. Sunny, T.D., Aparna, T., Neethu, P., Venkateswaran, J., Vishnupriya, V., Vyas, P.S.: Robotic arm with brain. Computer interfacing. Proc. Technol. 24, 1089–1096 (2016). https://doi.org/10.1016/j.protcy.2016.05.241. International Conference on Emerging Trends in Engineering, Science and Technology, ICETEST 2015. ISSN 2212-0173

    Google Scholar 

  16. Kadir, W.M.H.W., Samin, R.E., Ibrahim, B.S.K.: Internet controlled robotic arm. Proc. Eng. 41, 1065–1071 (2012). https://doi.org/10.1016/j.proeng.2012.07.284. International Symposium on Robotics and Intelligent Sensors, IRIS 2012. ISSN 1877-7058

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao Queen Garzón Quiroz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garzón Quiroz, M.Q. (2019). Inductive Machine Learning with Image Processing for Objects Detection of a Robotic Arm with Raspberry PI. In: Botto-Tobar, M., Pizarro, G., Zúñiga-Prieto, M., D’Armas, M., Zúñiga Sánchez, M. (eds) Technology Trends. CITT 2018. Communications in Computer and Information Science, vol 895. Springer, Cham. https://doi.org/10.1007/978-3-030-05532-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05532-5_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05531-8

  • Online ISBN: 978-3-030-05532-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics