Skip to main content

Automatic Bird Identification for Offshore Wind Farms

Abstract

There is a need for automatic bird identification system at offshore wind farms in Finland. The developed system should be able to operate from onshore, which is cost-effective in terms of installations and maintenance. Indubitably, a radar is the obvious choice to detect flying birds, but external information is required for actual identification. A conceivable method is to exploit visual camera images. In the proposed system, the radar detects birds and provides the coordinates to camera steering system. The camera steering system tracks the flying birds, thus enabling capturing a series of images. Classification is based on the images, and it is implemented by a small convolutional neural network trained with a deep learning algorithm. We also propose a data augmentation method in which images are rotated and converted in accordance with the desired color temperatures. The final identification is based on a fusion of data provided by the radar and image data. We present the results of the number of correctly identified species based on manually taken images.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baxter, A.T., Robinson, A.P.: A comparison of scavenging bird deterrence techniques at UK landfill sites. Int. J. Pest Manag. 53, pp. 347–356 (2007). Taylor & Francis Online. https://doi.org/10.1080/09670870701421444

  2. pelco-D protocol. Bruxy REGNET. http://bruxy.regnet.cz/programming/rs485/pelco-d.pdf

  3. All About the Peregrine Falcon. U.S. Fish and Wildlife Service (1999). https://web.archive.org/web/20080416195055/http://www.fws.gov/endangered/recovery/peregrine/QandA.html#fast

  4. Statistics. Finnish Meteorological Institute. http://ilmatieteenlaitos.fi/tuulitilastot

  5. Robin Radar Models. Robin Radar Systems B.V. https://www.robinradar.com/

  6. Richards, M.A.: Fundamentals of Radar Signal Processing. The McGraw-Hill Companies, New York (2005). ISBN: 0-07-144474-2

    Google Scholar 

  7. Bruderer, B.: The Study of Bird Migration by Radar, Part1: The Technical Basis. Naturwissenschaften, vol. 84, pp. 1–8. Springer-Verlag, Heidelberg (1997)

    Google Scholar 

  8. Fuzzy Logic Toolbox Documentation. The MathWorks Inc. https://se.mathworks.com/help/fuzzy/fuzzy.pdf

  9. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975). Elsevier

    Google Scholar 

  10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, pp. 330–371. MIT Press, Cambridge (2016). www.deeplearningbook.org

  11. Wang, J., Perez, L.: The Effectiveness of Data Augmentation in Image Classification Using Deep Learning. Stanford University, Stanford (2017). http://cs231n.stanford.edu/reports/2017/pdfs/300.pdf

    Google Scholar 

  12. Speranskaya, N.I.: Determination of spectrum color co-ordinates for twenty-seven normal observers. Opt. Spectrosc. 7, 424–428 (1959). Springer

    Google Scholar 

  13. Stiles, W.S., Burch, J.M.: NPL colour-matching investigation: Final report. Opt. Acta 6, 1–26 (1959). Taylor & Francis

    Google Scholar 

  14. Wyszecki, G., Stiles, W.S.: Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edn. Wiley, New York (1982)

    Google Scholar 

  15. Stockman, A., Sharpe, L.T.: Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype. Vis. Res. 40, 1711–1737 (2000). Elsevier

    Google Scholar 

  16. CIE Proceedings, Vienna Session 1963. Committee Report E-1.4.1, vol. B, pp. 209–220. Bureau Central de la CIE, Paris (1964)

    Google Scholar 

  17. Blackbody Color Datafile.: Vendian.org. http://www.vendian.org/mncharity/dir3/blackbody/UnstableURLs/bbr_color.html

  18. Jarrett, K., Kavukcuoglu, K., Ranzato, M.A., LeCun, Y.: What is the best multi-stage architecture for object recognition. In: International Conference on Computer Vision, pp. 2146–2153. IEEE, Kyoto, Japan (2009)

    Google Scholar 

  19. Niemi, J., Tanttu, J.T.: Automatic bird identification for offshore Wind farms: a case study for deep learning. In: Proceedings of ELMAR-2017, 59th IEEE International Symposium ELMAR-2017, Croatian Society Electronics in Marine (2017). ISBN:978-953-184-230-3

    Google Scholar 

  20. Huang, J.F., LeCun, Y.: Large-scale learning with SVM and convolutional nets for generic object categorization. In: Computer Vision and Pattern Recognition Conference (CVPR06). IEEE Press, New York, NY (2006)

    Google Scholar 

  21. Desholm, M., Kahlert, J.: Avian collision risk at an offshore wind farm. Biol. Lett. 1, 296–298 (2005). The Royal Society Publishing https://doi.org/10.1098/rsbl.2005.0336

  22. Marques, A.T., et al.: Understanding bird collisions at wind farms: an updated review on the causes and possible mitigation strategies. Biol. Conserv. 179, 40–52 (2014). Elsevier

    Google Scholar 

  23. Verhoef, J.P., Westra, C.A., Korterink, H., Curvers, A.: WT-Bird A Novel Bird Impact Detection System. ECN Research centre of the Netherlands (2002). https://www.ecn.nl/docs/library/report/2002/rx02055.pdf

  24. Wiggelinkhuizen, E.J., Barhorst, S.A.M., Rademakers, L.W.M.M., den Boon, H.J.: Bird Collision Monitoring System for Multi-Megawatt Wind Turbines, WT-Bird: Prototype Development and Testing. ECN Research Centre of the Netherlands (2006). https://www.ecn.nl/publications/PdfFetch.aspx?nr=ECN-E--06-027

    Google Scholar 

  25. Wiggelinkhuizen, E.J., den Boon, H.J.: Monitoring of Bird Collisions in Wind Farm Under Offshore-Like Conditions Using WT-BIRD System: Final Report. ECN Research Centre of the Netherlands (2009). https://www.ecn.nl/docs/library/report/2009/e09033.pdf

  26. DTBird.: Liquen Consultora Ambiental, S.L. http://www.dtbird.com/

  27. MUSE.: DHI. https://www.dhigroup.com/global/news/2017/02/automated-bird-monitoring-system-lands-on-pioneer-us-wind-farm

Download references

Acknowledgements

The authors wish to thank Suomen Hyötytuuli for the financial support and Robin Radar Systems for the technical support with the applied radar system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Niemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niemi, J., Tanttu, J.T. (2019). Automatic Bird Identification for Offshore Wind Farms. In: Bispo, R., Bernardino, J., Coelho, H., Lino Costa, J. (eds) Wind Energy and Wildlife Impacts . Springer, Cham. https://doi.org/10.1007/978-3-030-05520-2_9

Download citation

Publish with us

Policies and ethics