The Mitigation of Impact and the Impact of Mitigation: An Ethical Perspective

  • Roel MayEmail author


Societal concerns regarding the negative impacts of wind turbines on species and ecosystems have placed more emphasis on mitigation efforts pre- and post-construction. While the mitigation hierarchy is usually fronted to deal with negative ecological impacts, it is hardly employed accordingly. This calls for the core of the problem to be addressed, namely, the lack of an appropriate framework for mitigation as a concept to properly address ecological impacts caused by wind-power development. In this chapter, mitigation is defined as the intervention(s) implemented to affect the risk of wind turbines impacting species or ecosystems. This concept is placed within a social-ecological context where the consecutive steps of the mitigation hierarchy may be affected by socio-economic, technological or environmental spheres of interest. Decisions relating to mitigation are in principle normative, which necessitates addressing three central ethical questions: (1) In which circumstances should mitigation be implemented? (2) How much mitigation is required? (3) Who is responsible for mitigation? Implementing mitigation requires decision-makers to acknowledge that trouble never comes alone, which requires balancing trade-offs and embracing uncertainty into the decision-making process. Adaptive and participatory management may be the best decision-making framework to do this, as it allows for improved ecological understanding through monitoring and a flexible approach to mitigate locally but manage regionally.


Wind-power development Wildlife impacts Social-ecological systems Intervention ecology Risk Impact significance Precautionary principle Decision-making framework Environmental ethics Mitigation hierarchy 



I would like to thank Espen Dyrnes Stabell and Daniel Steel for their valuable input during discussion on how I could apply their ethical framework for distributive fairness to the mitigation hierarchy for wind power. I also thank two anonymous reviewers for their critical comments that improved the contents of this chapter.


  1. 1.
    Gartman, V., Bulling, L., Dahmen, M., Geißler, G., Köppel, J.: Mitigation measures for wildlife in wind energy development, consolidating the state of knowledge — part 2: operation, decommissioning. JEAPM. 18, 1650014 (2016). CrossRefGoogle Scholar
  2. 2.
    Vaissière, A.C., Levrel, H., Pioch, S., Carlier, A.: Biodiversity offsets for offshore wind farm projects: the current situation in Europe. Mar. Policy. 48, 172–183 (2014). CrossRefGoogle Scholar
  3. 3.
    Köppel, J., Dahmen, M., Helfrich, J., Schuster, E., Bulling, L.: Cautious but committed: moving toward adaptive planning and operation strategies for renewable energy’s wildlife implications. Environ. Manag. 54, 744–755 (2014). CrossRefGoogle Scholar
  4. 4.
    Lovich, J.E., Ennen, J.R.: Assessing the state of knowledge of utility-scale wind energy development and operation on non-volant terrestrial and marine wildlife. Appl. Energy. 103, 52–60 (2013). CrossRefGoogle Scholar
  5. 5.
    Martin, J.-L., Maris, V., Simberloff, D.S.: The need to respect nature and its limits challenges society and conservation science. Proc. Acad. Nat. Sci. Phila. 113, 6105–6112 (2016). CrossRefGoogle Scholar
  6. 6.
    Raiter, K.G., Possingham, H.P., Prober, S.M., Hobbs, R.J.: Under the radar: mitigating enigmatic ecological impacts. Trends Ecol. Evol. 29, 635–644 (2014). CrossRefGoogle Scholar
  7. 7.
    Hayes, D.J.: Addressing the environmental impacts of large infrastructure projects: making “mitigation” matter. Environ. Law Report. 1, 10016–10021 (2014)Google Scholar
  8. 8.
    Cole, S.G.: Wind power compensation is not for the birds: an opinion from an environmental economist. Restor. Ecol. 19, 147–153 (2011). CrossRefGoogle Scholar
  9. 9.
    Sovacool, B.K., Heffron, R.J., McCauley, D., Goldthau, A.: Energy decisions reframed as justice and ethical concerns. Nat. Energy. 1, (2016).
  10. 10.
    Tallis, H., Kennedy, C.M., Ruckelshaus, M., Goldstein, J., Kiesecker, J.M.: Mitigation for one & all: an integrated framework for mitigation of development impacts on biodiversity and ecosystem services. Environ. Impact Assess. Rev. 55, 21–34 (2015). CrossRefGoogle Scholar
  11. 11.
    Künneke, R., Mehos, D.C., Hillerbrand, R., Hemmes, K.: Understanding values embedded in offshore wind energy systems: toward a purposeful institutional and technological design. Environ. Sci. Pol. 53, 118–129 (2015). CrossRefGoogle Scholar
  12. 12.
    May, R., Gill, A.B., Köppel, J., Langston, R.H.W., Reichenbach, M., Scheidat, M., Smallwood, S., Voigt, C.C., Hüppop, O., Portman, M.: Future research directions to reconcile wind turbine–wildlife interactions. In: Köppel, J., (ed.) Wind Energy and Wildlife Interactions: Presentations from the CWW2015 Conference, pp. 255–276. Springer, Cham (2017)Google Scholar
  13. 13.
    May, R.F.: A unifying framework for the underlying mechanisms of avian avoidance of wind turbines. Biol. Conserv. 190, 179–187 (2015). CrossRefGoogle Scholar
  14. 14.
    Anonymous.: Utility company sentenced in Wyoming for killing protected birds at wind projects. Justice News 2014 15.09.2014 [cited 2015 06.05.2015]; Available from:
  15. 15.
    European Union: Guidance Document. Wind Energy Developments and Natura 2000. Publications Office of the European Union, Luxembourg (2011)Google Scholar
  16. 16.
    May, R., Masden, E.A., Bennet, F., Perron, M.: Considerations for upscaling individual effects of wind energy development towards population-level impacts on wildlife. J. Environ. Manage. 230, 84–93 (2018).
  17. 17.
    Gill, A.B.: Offshore renewable energy: ecological implications of generating electricity in the coastal zone. J. Appl. Ecol. 42, 605–615 (2005). CrossRefGoogle Scholar
  18. 18.
    Valiente-Banuet, A., Aizen, M.A., Alcántara, J.M., Arroyo, J., Cocucci, A., Galetti, M., García, M., García, D., Gómez, J., Jordano, P., Medel, R., Navarro, L., Obeso, J.R., Oviedo, R., Ramírez, N., Traveset, A., Verdú, M., Zamora, R.: Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015). CrossRefGoogle Scholar
  19. 19.
    Burkhard, B., Opitz, S., Lenhart, H., Ahrendt, K., Garthe, S., Mendel, B., Windhorst, W.: Ecosystem based modeling and indication of ecological integrity in the German North Sea-Case study offshore wind parks. Ecol. Indic. 11, 168–174 (2011). CrossRefGoogle Scholar
  20. 20.
    Cardona, O.-D., van Aalst, M.K., Birkmann, J., Fordham, M., McGregor, G., Perez, R., Pulwarty, R.S., Schipper, E.L.F., Sinh, B.T.: Determinants of risk: exposure and vulnerability. In: Field, C.B. et al. (eds.) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), pp. 65–108. Cambridge University Press, CambridgeGoogle Scholar
  21. 21.
    Steel, D.: Philosophy and the Precautionary Principle. Science, Evidence, and Environmental Policy. Cambridge University Press, Cambridge (2015)Google Scholar
  22. 22.
    von Schomberg, R.: The precautionary principle and its normative challenges. In: Fisher, E., Jones, J., von Schomberg, R. (eds.) Implementing the Precautionary Principle: Perspectives and Prospects, pp. 19–42. Edward Elgar, Cheltenham/Northampton (2006)Google Scholar
  23. 23.
    Hobbs, R.J., Hallet, L.M., Ehrlich, P.R., Mooney, H.A.: Intervention ecology: applying ecological science in the twenty-first century. Bioscience. 61, 442–450 (2011). CrossRefGoogle Scholar
  24. 24.
    Wiens, J.A., Hobbs, R.J.: Integrating conservation and restoration in a changing world. Bioscience. 65, 302–312 (2015). CrossRefGoogle Scholar
  25. 25.
    Luuppala, L.S.: Ecological Restoration: Conceptual Analysis and Ethical Implications. University of Helsinki. Helsinki, Finland (2015)Google Scholar
  26. 26.
    May, R.: Mitigation options for birds. In: Perrow, M. (ed.) Wildlife and Windfarms: Conflicts and Solutions Onshore Solutions, vol. 2, pp. 124–145. Pelagic Publishing, Exeter (2017)Google Scholar
  27. 27.
    McGinnis, M.D., Ostrom, E.: Social-ecological system framework: initial changes and continuing challenges. Ecol. Soc. 19, (2014). Artn 30).
  28. 28.
    Ostrom, E.: A general framework for analyzing sustainability of social-ecological systems. Science. 325, 419–422 (2009). CrossRefGoogle Scholar
  29. 29.
    Smeets, E., Weterings, R.: Environmental Indicators: Typology and Overview. E.E. Agency, Copenhagen (1999)Google Scholar
  30. 30.
    EPA: Guidelines for Ecological Risk Assessment. Environmental Protection Agency, Washington, DC (1998)Google Scholar
  31. 31.
    Attfield, R.: Environmental Ethics: An Overview. eLS, A24201 (2012)Google Scholar
  32. 32.
    Schaub, M.: Spatial distribution of wind turbines is crucial for the survival of red kite populations. Biol. Conserv. 155, 111–118 (2012). CrossRefGoogle Scholar
  33. 33.
    Klain, S.C., Satterfield, T., Sinner, J., Ellis, J.I., Chan, K.M.A.: Bird killer, industrial intruder or clean energy? Perceiving risks to ecosystem services due to an offshore wind farm. Ecol. Econ. 143, 111–129 (2018). CrossRefGoogle Scholar
  34. 34.
    Menegaki, A.: Valuation for renewable energy: a comparative review. Renew. Sustain. Energy Rev. 12, 2422–2437 (2008). CrossRefGoogle Scholar
  35. 35.
    Welstead, J., Hirst, R., Keogh, D., Robb, G., Bainsfair, R.: Research and Guidance on Restoration and Decommissioning of Onshore Wind Farms. Scottish Natural Heritage, Inverness (2013)Google Scholar
  36. 36.
    Aydin, N.Y., Kentel, E., Duzgun, S.: GIS-based environmental assessment of wind energy systems for spatial planning: a case study from Western Turkey. Renew. Sustain. Energy Rev. 14, 364–373 (2010). CrossRefGoogle Scholar
  37. 37.
    Tsoutsos, T., Tsitoura, I., Kokologos, D., Kalaitzakis, K.: Sustainable siting process in large wind farms case study in Crete. Renew. Energy. 75, 474–480 (2015). CrossRefGoogle Scholar
  38. 38.
    Ives, C.D., Bekessy, S.A.: The ethics of offsetting nature. Front. Ecol. Evol. 13, 568–573 (2015). CrossRefGoogle Scholar
  39. 39.
    Wilson, K.A., Law, E.A.: Ethics of conservation triage. Front. Ecol. Evol. 4, 112 (2016). CrossRefGoogle Scholar
  40. 40.
    Gove, B., Langston, R.H.W., McCluskie, A., Pullan, J.D., Scrase, I.: Wind Farms and Birds: An Updated Analysis of the Effects of Wind Farms on Birds, and Best Practice Guidance on Integrated Planning and Impact Assessment. C.o. Europe, Strasbourg (2013)Google Scholar
  41. 41.
    IFC: Environmental, Health, and Safety Guidelines Wind Energy. I.F. Corporation (2015)Google Scholar
  42. 42.
    U.S. Fish & Wildlife Service: U.S. Fish and Wildlife Service Land-Based Wind Energy Guidelines. Arlington (2012)Google Scholar
  43. 43.
    Hanssen, F., May, R., van Dijk, J., Stokke, B.G., De Stefano, M.: Spatial Multi-Criteria Decision Analysis (SMCDA) Toolbox for Consensus-Based Siting of Powerlines and Wind-Power Plants (Con-Site). Norwegian Institute for Nature Research, Trondheim (2018)Google Scholar
  44. 44.
    Dahl, E.L., May, R., Nygård, T., Åstrøm, J., Diserud, O.H.: Repowering Smøla Wind Power Plant. An Assessment of Avian Conflicts. Norwegian Institute for Nature Research, Trondheim (2015)Google Scholar
  45. 45.
    Arnett, E.B., Huso, M.M.P., Schirmacher, M.R., Hayes, J.P.: Altering turbine speed reduces bat mortality at wind-energy facilities. Front. Ecol. Environ. 9, 209–214 (2011). CrossRefGoogle Scholar
  46. 46.
    Hendersen, N., Sutherland, W.J.: Two truths about discounting and their environmental consequences. Trends Ecol. Evol. 11, 527–528 (1996)CrossRefGoogle Scholar
  47. 47.
    Quetier, F., Lavorel, S.: Assessing ecological equivalence in biodiversity offset schemes: key issues and solutions. Biol. Conserv. 144, 2991–2999 (2011). CrossRefGoogle Scholar
  48. 48.
    Moilanen, A., van Teeffelen, A.J.A., Ben-Haim, Y., Ferrier, S.: How much compensation is enough? A framework for incorporating uncertainty and time discounting when calculating offset ratios for impacted habitat. Restor. Ecol. 17, 470–478 (2009). CrossRefGoogle Scholar
  49. 49.
    Jenkins, K., McCauley, D., Heffron, R., Stephan, H., Rehner, R.: Energy justice: a conceptual review. Energy Res. Soc. Sci. 11, 174–182 (2016). CrossRefGoogle Scholar
  50. 50.
    Duinker, P.N.: FORUM: the significance of environmental impacts: an exploration of the concept. Environ. Manag. 10, 1–10 (1986)CrossRefGoogle Scholar
  51. 51.
    Lawrence, D.P.: Impact significance determination—back to basics. Environ. Impact Assess. Rev. 27, 755–769 (2007). CrossRefGoogle Scholar
  52. 52.
    Baerwald, E.F., Edworthy, J., Holder, M., Barclay, R.M.R.: A large-scale mitigation experiment to reduce bat fatalities at wind energy facilities. J. Wildl. Manag. 73, 1077–1081 (2009). CrossRefGoogle Scholar
  53. 53.
    Arnett, E.B., M. Baker, C. Hein, M. Schirmacher, M.M.P. Huso, J.M. Szewczak: Effectiveness of deterrents to reduce bat fatalities at wind energy fatalities. Proceedings Conference on Wind Energy and Wildlife impacts, 2–5 May 2011, Trondheim, Norway. NINA Report 693, R. Bevanger K, May, R 57. Norwegian Institute for Nature Research, Trondheim (2011)Google Scholar
  54. 54.
    Dahl, E.L.: Population Demographics in White-Tailed Eagle at an On-Shore Wind Farm Area in Coastal Norway. Norwegian University of Science and Technology (NTNU), Trondheim (2014)Google Scholar
  55. 55.
    Trouwborst, A.: Prevention, precaution, logic and law. The relationship between the precautionary principle and the preventative principle in international law and associated questions. Erasmus Law Rev. 2, 105–127 (2009)Google Scholar
  56. 56.
    Gardiner, S.M., Core Precautionary, A.: Principle. J. Polit. Philos. 14, 33–60 (2006)CrossRefGoogle Scholar
  57. 57.
    Hermerén, G.: The principle of proportionality revisited: interpretations and applications. Med. Health Care Philos. 15, 373–382 (2012). CrossRefGoogle Scholar
  58. 58.
    Gaspars-Wieloch, H.: Modifications of the Hurwicz’s decision rule. CEJOR. 22, 779–794 (2014). CrossRefGoogle Scholar
  59. 59.
    May, R., Reitan, O., Bevanger, K., Lorentsen, S.H., Nygard, T.: Mitigating wind-turbine induced avian mortality: sensory, aerodynamic and cognitive constraints and options. Renew. Sust. Energ. Rev. 42, 170–181 (2015). CrossRefGoogle Scholar
  60. 60.
    Marques, A.T., Batalha, H., Rodrigues, S., Costa, H., Pereira, M.J.R., Fonseca, C., Mascarenhas, M., Bernardino, J.: Understanding bird collisions at wind farms: an updated review on the causes and possible mitigation strategies. Biol. Conserv. 179, 40–52 (2014). CrossRefGoogle Scholar
  61. 61.
    Gartman, V., Bulling, L., Dahmen, M., Geißler, G., Köppel, J.: Mitigation measures for wildlife in wind energy development, consolidating the state of knowledge—part 1: planning and siting, construction. JEAPM. 18, 1650013 (2016). CrossRefGoogle Scholar
  62. 62.
    Gardner, T.A., von Hase, A., Brownlie, S., Ekstrom, J.M., Pilgrim, J.D., Savy, C.E., Stephens, R.T., Treweek, J., Ussher, G.T., Ward, G., Ten Kate, K.: Biodiversity offsets and the challenge of achieving no net loss. Conserv. Biol. 27, 1254–1264 (2013). CrossRefGoogle Scholar
  63. 63.
    IFC: Performance Standard 6. I.F. Corporation (2012)Google Scholar
  64. 64.
    Langhamer, O.: Artificial reef effect in relation to offshore renewable energy conversion: state of the art. Sci. World J. 2012, 386713 (2012). CrossRefGoogle Scholar
  65. 65.
    Smyth, K., Christie, N., Burdon, D., Atkins, J.P., Barnes, R., Elliott, M.: Renewables-to-reefs? – decommissioning options for the offshore wind power industry. Mar. Pollut. Bull. 90, 247–258 (2015). CrossRefGoogle Scholar
  66. 66.
    Virah-Sawmy, M., Ebeling, J., Taplin, R.: Mining and biodiversity offsets: a transparent and science-based approach to measure “no-net-loss”. J. Environ. Manag. 143, 161–170 (2014). CrossRefGoogle Scholar
  67. 67.
    Loder, R.E.: Breath of life: ethical wind power and wildlife. Vermont J. Environ. Law. 10, 507–531 (2009)CrossRefGoogle Scholar
  68. 68.
    Stabell, E.D., Steel, D.: Precaution and fairness: a framework for distributing costs of protection from environmental risks. J. Agric. Environ. Ethics. (2018).
  69. 69.
    Aggarwal, R., Dow, S.: Corporate governance and business strategies for climate change and environment mitigation. Eur. J. Financ. 18, 113–131 (2012)CrossRefGoogle Scholar
  70. 70.
    Unsworth, K.L., Russell, S.V., Davis, M.C.: Is dealing with climate change a corporation’s responsibility? A social contract perspective. Front. Psychol. 7(1212), (2016).
  71. 71.
    Warren, C.R., Lumsden, C., O’Dowd, S., Birnie, R.V.: ‘Green on green’: public perceptions of wind power in Scotland and Ireland. J. Environ. Plan. Manag. 48, 853–875 (2005)CrossRefGoogle Scholar
  72. 72.
    Wolsink, M.: Wind power: basic challenge concerning social acceptance. In: Meyers, R.A. (ed.) Encyclopedia of Sustainability Science and Technology, pp. 12218–12254. Springer-Verlag, New York (2012)CrossRefGoogle Scholar
  73. 73.
    Ringius, L., Torvanger, A., Underdal, A.: Burden sharing and fairness principles in international climate policy. Int. Environ. Agreements: Polit. Law Econ. 2, 1–22 (2002)CrossRefGoogle Scholar
  74. 74.
    Gartman, V., Wichmann, K., Bulling, L., Elena Huesca-Perez, M., Koppel, J.: Wind of change or wind of challenges: implementation factors regarding wind energy development, an international perspective. AIMS Energy. 2, 485–504 (2014). CrossRefGoogle Scholar
  75. 75.
    Hanna, L., A. Copping, S. Geerlofs, L. Feinberg, J. Brown-Saracino, F. Bennett, R. May, J. Köppel, L. Bulling, V. Gartman: Results of IEA Wind Adaptive Management White Paper. Prepared for the International Energy Agency Wind Implementing Agreement. I.E.A. Wind (2016)Google Scholar
  76. 76.
    Arnett, E.B., May, R.F.: Mitigating wind energy impacts on wildlife: approaches for multiple taxa. Hum. Wildl. Interact. 10, 28–41 (2016)Google Scholar
  77. 77.
    Mattews, H.D., Turner, S.E.: Of mongooses and mitigation: ecological analogues to geoengineering. Environ. Res. Lett. 4, 045105 (2009). CrossRefGoogle Scholar
  78. 78.
    Gill, J.A., Norris, K., Sutherland, W.J.: Why behavioural responses may not reflect the population consequences of human disturbance. Biol. Conserv. 97, 265–268 (2001)CrossRefGoogle Scholar
  79. 79.
    Frid, A., Dill, L.: Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 11 (2002)CrossRefGoogle Scholar
  80. 80.
    Masden, E.A., McCluskie, A., Owen, E., Langston, R.H.W.: Renewable energy developments in an uncertain world: the case of offshore wind and birds in the UK. Mar. Policy. 51, 169–172 (2015). CrossRefGoogle Scholar
  81. 81.
    Agnew, R.C., Smith, V.J., Fowkes, R.C.: Wind turbines cause chronic stress in badgers (Meles Meles) in Great Britain. J. Wildl. Dis. 52, 459–467 (2016). CrossRefGoogle Scholar
  82. 82.
    King, S.L., Schick, R.S., Donovan, C., Booth, C.G., Burgman, M., Thomas, L., Harwood, J.: An interim framework for assessing the population consequences of disturbance. Methods Ecol. Evol. 6, 1150–1158 (2015). CrossRefGoogle Scholar
  83. 83.
    Thaxter, C.B., Buchanan, G.M., Carr, J., Butchart, S.H.M., Newbold, T., Green, R.E., Tobias, J.A., Foden, W.B., O’Brien, S., Pearce-Higgins, J.W.: Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proc. Biol. Sci. 284, 20170829 (2017).
  84. 84.
    Follestad, A., Reitan, O., Pedersen, H.C., Brøseth, H., Bevanger, K.: Vindkraftverk på Smøla: Mulige konsekvenser for “rødlistede” fuglearter. N.I.f.N. Research, Trondheim (1999)Google Scholar
  85. 85.
    Solli, J.: Where the eagles dare? Enacting resistance to wind farms through hybrid collectives. Environ. Polit. 19, 45–60 (2010). CrossRefGoogle Scholar
  86. 86.
    Rygg, B.J.: Wind power—an assault on local landscapes or an opportunity for modernization? Energ Policy. 48, 167–175 (2012). CrossRefGoogle Scholar
  87. 87.
    Kuijken, E.: On-the-spot appraisal Wind farms at the Smøla Archipelago (Norway). 15–17 June 2009. Standing Committee of the Convention on the conservation of European wildlife and natural habitats, Strasbourg, France (2009)Google Scholar
  88. 88.
    Thelander, C.G., K.S. Smallwood: The altamont pass wind resource area’s effects on birds: a case history. In: de Lucas, M., Janss, G.F.E., Ferrer, M. (eds.) Birds and Wind Farms. Risk Assessment and Mitigation, pp. 25–46. Servicios Informativos Ambientales/Quercus, Madrid (2007)Google Scholar
  89. 89.
    Bevanger, K., Berntsen, F., Clausen, S., Dahl, E.L., Flagstad, Ø., Follestad, A., Halley, D., Hanssen, F., Johnsen, L., Kvaløy, P., Lund-Hoel, P., May, R., Nygård, T., Pedersen, H.C., Reitan, O., Røskaft, E., Steinheim, Y., Stokke, B., Vang, R.: Pre- and Post-Construction Studies of Conflicts Between Birds and Wind Turbines in Coastal Norway (BirdWind). Report on findings 2007–2010. N.I.f.N. Research, Trondheim (2010)Google Scholar
  90. 90.
    Bevanger, K., R. May, B. Stokke: Landbasert vindkraft. Utfordringer for fugl, flaggermus og rein. N.I.f.N. Research, Trondheim, Norway (2016)Google Scholar
  91. 91.
    Cook, C.N., de Bie, K., Keith, D.A., Addison, P.F.E.: Decision triggers are a critical part of evidence-based conservation. Biol. Conserv. 195, 46–51 (2016). CrossRefGoogle Scholar
  92. 92.
    Martin, J., Runge, M.C., Nichols, J.D., Lubow, B.C., Kendall, W.L.: Structured decision making as a conceptual framework to identify thresholds for conservation and management. Ecol. Appl. 19, 1079–1090 (2009). CrossRefGoogle Scholar
  93. 93.
    Lempert, R.J., Collins, M.T.: Managing the risk of uncertain threshold responses: comparison of robust, optimum, and precautionary approaches. Risk Anal. 27, 1009–1026 (2007). CrossRefGoogle Scholar
  94. 94.
    Grünkorn, T., Blew, J., Coppack, T., Krüger, O., Nehls, G., Potiek, A., Reichenbach, M., von Rönn, J., Timmermann, H., Weitekamp, S.: Prognosis and Assessment of Bird Collision Risks at Wind Turbines in Northern Germany (PROGRESS). Final report commissioned by the Federal Ministry for Economic affairs and Energy in the framework of the 6th Energy research programme of the federal government. BioConsult/ARSU/IfAÖ/University of Bielefeld, Husum/Oldenburg/Rostock/Bielefeld (2016)Google Scholar
  95. 95.
    Schlüter, M., Müller, B., Frank, K.: How to use models to improve analysis and governance of social-ecological systems – the reference frame MORE. SSRN (2013).
  96. 96.
    Wilson, R.S., Hardisty, D.J., Epanchin-Niell, R.S., Runge, M.C., Cottingham, K.L., Urban, D.L., Maguire, L.A., Hastings, A., Mumby, P.J., Peters, D.P.: A typology of time-scale mismatches and behavioral interventions to diagnose and solve conservation problems. Conserv. Biol. 30, 42–49 (2016). CrossRefGoogle Scholar
  97. 97.
    Mouquet, N., Lagadeuc, Y., Devictor, V., Doyen, L., Duputie, A., Eveillard, D., Faure, D., Garnier, E., Gimenez, O., Huneman, P., Jabot, F., Jarne, P., Joly, D., Julliard, R., Kefi, S., Kergoat, G.J., Lavorel, S., Le Gall, L., Meslin, L., Morand, S., Morin, X., Morlon, H., Pinay, G., Pradel, R., Schurr, F.M., Thuiller, W., Loreau, M.: REVIEW: predictive ecology in a changing world. J. Appl. Ecol. 52, 1293–1310 (2015). CrossRefGoogle Scholar
  98. 98.
    Williams, B.K., Brown, E.D.: Adaptive management: from more talk to real action. Environ. Manag. 53, 465–479 (2014). CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Norwegian Institute for Nature Research (NINA)TrondheimNorway

Personalised recommendations