Wild Boar – Production, Meat Quality Traits and Derived Products

  • Lara Morán
  • Kizkitza Insausti
  • Luis Javier R. Barron
  • Noelia AldaiEmail author


This chapter presents a broad overview related to the production, carcass characteristics, meat quality and processed products from wild boar (Sus scrofa species belonging to the Suidae family). Wild boars live in flocks and their ability to adapt to a broad variety of natural habitats is mainly due to their high reproductive rate and ability to successfully use a wide range of feedstuffs. Wild boar meat is traditionally consumed in Europe and Asia, and is mainly obtained as a by-product of sport hunting. Therefore, the availability of fresh product is seasonal.

The performance, growth and meat quality of wild boars depend on many factors such as environmental conditions, genetic background, gender, diet and age; the pre-slaughter conditions (i.e. stress) is also very relevant. In this regard, their higher resistance to stress compared to pigs has been related to their type of muscle fibres. Boar taint (off-flavour associated to non-castrated males) is also a characteristic associated with this type of meat. The most beneficial characteristics of wild boar meat are their low intramuscular fat and high vitamin E contents. The fatty acid composition falls within the range of values reported for pork, but their meat is darker and tougher compared to pork. Overall, wild boar meat presents a good opportunity to elaborate processed products but technological properties and acceptability of derived products are limited and need to be further investigated.


Performance Meat quality Stress Boar taint Processed products Suids 


  1. Amici A, Serrani F, Rossi CM, Primi R (2012) Increase in crop damage caused by wild boar (Sus scrofa L.): the “refuge effect”. Agron Sustain Dev 32:683–692CrossRefGoogle Scholar
  2. Aravena P, Skewes O (2007) European wild boar purebred and Sus scrofa intercrosses. Discrimination proposals. A review. Agro-ciencia 23:133–147Google Scholar
  3. Backus GBC, van den Broek E, van der Fels B, Heres L, Immink VM, Knol EF, Kornelis M, Mathur PK, van der Peet-Schwering C, van Riel JW, Snoek HM, de Smet A, Tacken GML, Valeeva NI, van Wagenberg CPA (2016) Evaluation of producing and marketing entire male pigs. NJAS-Wagen J Life Sc 76:29–41CrossRefGoogle Scholar
  4. Bakan J (2010) Wild boar (Sus scrofa): how many subspecies exactly in Europe we have?. Acta Facultatis Forestalis Zvolen SlovakiaGoogle Scholar
  5. Barría-Sáez JA (2009) Caracterización de la Situación de la comercialización y consumo de la carne de jabalí (Sus scrofa L., 1758) en Chile. Universidad Austral de Chile. Facultad de Ciencias VeterinariasGoogle Scholar
  6. Barrios-Garcia MN, Ballari SA (2012) Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biol Invasions 14:2283–2300CrossRefGoogle Scholar
  7. Baskin L, Danell K (2003) Ecology of ungulates: a handbook of species in Eastern Europe and Northern and Central Asia. Springer, BerlinCrossRefGoogle Scholar
  8. Bateson P, Bradshaw EL (1997) Physiological effects of hunting red deer (Cervus elaphus). Proc Biol Sci 264:1707–1714PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bogucka J, Kapelanski W, Elminowska-Wenda G, Walasik K, Lewandowska K (2008) Comparison of microstructural traits of Musculus longissimus lumborum in wild boars, domestic pigs and wild boar/domestic pig hybrids. Archiv Tierzucht 51:359–365Google Scholar
  10. Bonneau M, Chevillon P (2012) Acceptability of entire male pork with various levels of androstenone and skatole by consumers according to their sensitivity to androstenone. Meat Sci 90:330–337PubMedCrossRefGoogle Scholar
  11. Booth W (1995) Wild boar farming in the United Kingdom. Ibex J Mt Ecol 3:245–248Google Scholar
  12. Borilova G, Hulankova R, Svobodova I, Jezek F, Hutarova Z, Vecerek V, Steinhauserova I (2016) The effect of storage conditions on the hygiene and sensory status of wild boar meat. Meat Sci 118:71–77PubMedCrossRefGoogle Scholar
  13. Bowker BC, Grant AL, Forrest JC, Gerrard DE (2000) Muscle metabolism and PSE pork. J Anim Sci 79:1–8CrossRefGoogle Scholar
  14. Briedermann L (1970) Zum körper und organwaschstum des wildchweines in der Deutschen. Demokrtischen Republik. Archiv für Forstwesen 19:401–420Google Scholar
  15. Briedermann L (1986) Schwarzwild. Verlag, Deutscher Landwirtschaftsverlag. Berlin, GermanyGoogle Scholar
  16. Brooks RI, Pearson AM (1989) Odor thresholds of the C19-Δ16-steroids responsible for boar odor in pork. Meat Sci 25:11–19PubMedCrossRefGoogle Scholar
  17. Bywater KA, Apollonio M, Cappai N, Stephens PA (2010) Litter size and latitude in a large mammal: the wild boar Sus scrofa. Mamm Rev 40:212–220Google Scholar
  18. Casoli C, Duranti E, Cambiotti F, Avellini P (2005) Wild ungulate slaughtering and meat inspection. Vet Res Commun 29:89–95PubMedCrossRefGoogle Scholar
  19. Claus R, Weiler U, Herzog A (1994) Physiological aspects of androstenone and skatole formation in the boar—a review with experimental data. Meat Sci 38:289–305PubMedCrossRefGoogle Scholar
  20. Courchamp F, Chapuis J, Pascal M (2003) Mammal invaders on islands: impact, control and control impact. Biol Rev 78:347–383PubMedCrossRefGoogle Scholar
  21. De la Vega J (2003) Las otras carnes en Chile: características y consumo. Universidad Austral de Chile and Fundación para la Innovación Agraria, Valdivia, ChileGoogle Scholar
  22. Devine C, Dikeman M (2014) Encyclopedia of meat sciences, 2nd edn. Elsevier, LondonGoogle Scholar
  23. Dimatteo S, Marsico G, Facciolongo AM, Ragni M, Zezza F (2003) Chemical and fatty acid composition of meat of wild boars fed on diets containing polyunsaturated fatty acids. Ital J Anim Sci 2:418–420Google Scholar
  24. Dransfield E, Ledwith MJ, Taylor AA (1991) Effect of electrical stimulation, hip suspension and ageing on quality of chilled pig meat. Meat Sci 29:129–139PubMedCrossRefGoogle Scholar
  25. Erxleben JCB (1777) Systema Regni Animalis per classes, ordines, genera, species, varietates cum synonymia et historia animalium. Classis I. Mammalia. Ed. Lipsiae, Impensis WeygandianisGoogle Scholar
  26. Executive BP (2011) Pig yearbook 2011. Agriculture and Horticulture Development Board, KenilworthGoogle Scholar
  27. Fischer J, Brinkmann D, Elsinghorst PW, Wüst M (2012) Determination of the boar taint compound skatole in meat juice by means of stable isotope dilution analysis–direct immersion–solid phase microextraction–gas chromatography/mass spectrometry. Meat Sci 91:261–265PubMedCrossRefGoogle Scholar
  28. Fischer J, Wüst M (2012) Quantitative determination of the boar taint compounds androstenone, skatole, indole, 3α-androstenol and 3β-androstenol in wild boars (Sus scrofa) reveals extremely low levels of the tryptophan-related degradation products. Food Chem 135:2128–2132PubMedCrossRefGoogle Scholar
  29. Gallo Orsi U, Macchi E, Perrone A, Durio P (1995) Biometric data and growth rates of a wild boar population living in the Italian Alps. Ibex J Mt Ecol 3:60–63Google Scholar
  30. Garzón-Heydt P (1991) Biología y ecología del jabalí (Sus scrofa L., 1758) en el Parque Natural de Monfragüe. Tesis Doctoral, Universidad Autónoma de MadridGoogle Scholar
  31. Giersing M, Lundström K, Andersson A (2000) Social effects and boar taint: significance for production of slaughter boars (Sus scrofa). J Anim Sci 78:296–305PubMedCrossRefGoogle Scholar
  32. Gill C (2007) Microbiological conditions of meats from large game animals and birds. Meat Sci 77:149–160CrossRefGoogle Scholar
  33. Grubešić M, Konjević D, Severin K, Hadziosmanovic M, Tomljanovic K, Masek T, Margaletic J, Slavica A (2011) Dressed and undressed weight in naturally bred wild boar (Sus scrofa): The possible influence of crossbreeding. Acta Aliment 40:502–508CrossRefGoogle Scholar
  34. Hansson KE, Lundstrom K, Fjelkner-Modig S (1980) The importance of androstenone and skatole for boar taint. Swed J Agric Res 10:167–173Google Scholar
  35. Harrison DL, Bates PJJ (1991) The mammals of Arabia. Harrison Zoological Museum, SevenoaksGoogle Scholar
  36. Hodgkinson SM, Matus F, Lopez IF (2013) Behavior of grazing European wild boar (Sus scrofa) in a semi-extensive production system. Cienc Investig Agrar 40:193–199CrossRefGoogle Scholar
  37. Hodgkinson SM, Polando C, Aceiton L, Lopez IF (2017) Pasture intake and grazing behaviour of growing European wild boar (Sus scrofa L.) and domestic pigs (Sus scrofa domesticus, Landrace× Large White) in a semi-extensive production system. J Agr Sci 155:1659–1668CrossRefGoogle Scholar
  38. Hofbauer P, Smulders FJ (2011) The muscle biological background of meat quality including that of game species. In: Paulsen P, Bauer A, Vodnansky M, Winkelmayer R, Smulder FJM (eds) Game meat hygiene in focus. Wageningen Academic Publishers, The Netherlands, pp 273–295CrossRefGoogle Scholar
  39. Hoffman L (2001) The effect of day-time cropping on warthog (Phacochoerus aethiopicus) meat quality. In: International Congress of Meat Science and Technology, vol 47. Japan Society for Meat Science and Technology, pp 70–71Google Scholar
  40. Hoffman L, Wiklund E (2006) Game and venison–meat for the modern consumer. Meat Sci 74:197–208CrossRefGoogle Scholar
  41. Hohmann U, Huckschlag D (2005) Investigations on the radiocaesium contamination of wild boar (Sus scrofa) meat in Rhineland-Palatinate: a stomach content analysis. Eur J Wildlife Res 51:263–270CrossRefGoogle Scholar
  42. Hoz L, Lopez-Bote CJ, Cambero MI, D’Arrigo M, Pin C, Santos C, Ordóñez JA (2003) Effect of dietary linseed oil and α-tocopherol on pork tenderloin (Psoas major) muscle. Meat Sci 65:1039–1044PubMedCrossRefGoogle Scholar
  43. Jensen C, Guider J, Skovgaar IM, Staun H, Skibsted LH, Jensen SK, Møller AJ, Buckley J, Bertelsen G (1997) Effects of dietary α-tocopheryl acetate supplementation on α-tocopherol deposition in porcine m. psoas major and m. longissimus dorsi and on drip loss, colour stability and oxidative stability of pork meat. Meat Sci 45:491–500PubMedCrossRefGoogle Scholar
  44. Ježek M, Štípek K, Kušta T, Červený J, Vícha J (2011) Reproductive and morphometric characteristics of wild boar (Sus scrofa) in the Czech Republic. J For Sci 57:285–292CrossRefGoogle Scholar
  45. Juárez M, Dugan MER, Aldai N, Aalhus JL, Patience JF, Zijlstra RT, Beaulieu AD (2011) Increasing omega-3 levels through dietary co-extruded flaxseed supplementation negatively affects pork palatability. Food Chem 126:1716–1723PubMedCrossRefGoogle Scholar
  46. Kasprzyk A, Stasiak A, Babicz M (2010) Meat quality and ultrastructure of muscle tissue from fatteners of Wild Boar, Pulawska and its crossbreed Pulawska x (Hamshire x Wild Boar). Archiv Tierzucht 53:184–193Google Scholar
  47. Konjević D, Severin K, Janicki Z, Slavica A, Grubešić M, Tomljanović K, Hadžiosmanović M, Kozačinski L (2008) Contribution to knowledge of body growth of wild boars in their plain habitats in the Republic of Croatia. Meso 10:360–364Google Scholar
  48. Kotanen PM (1995) Responses of vegetation to a changing regime of disturbance: effects of feral pigs in a Californian coastal prairie. Ecography 18:190–199CrossRefGoogle Scholar
  49. Kritzinger B, Hoffman L, Ferreira A (2003) A comparison between the effects of two cropping methods on the meat quality of impala (Aepyceros melampus). S Afr J Anim Sci 33:233–241Google Scholar
  50. Lachowicz K, Żochowska J, Sobczak M (2004) Comparison of the texture and structure of selected muscles of piglets and wild boar juveniles. Pol J Food Nutr Sci 13:75–79Google Scholar
  51. Lachowicz K, Żochowska-Kujawska J, Gajowiecki L, Sobczak M, Kotowicz M, Żych A (2008) Effects of wild boars meat of different season of shot addition on texture of finely ground model pork and beef sausages. Electronic J Pol Agric Univer 11 (
  52. Lammers M, Dietze K, Ternes W (2009) A comparison of the volatile profiles of frying European and Australian wild boar meat with industrial genotype pork by dynamic headspace-GC/MS analysis. J Muscle Foods 20:255–274CrossRefGoogle Scholar
  53. Long J (2003) Introduced mammals of the world: their history. Distribution and influence. CSIRO Publishing, VIC, AustraliaGoogle Scholar
  54. Lundström K, Matthews KR, Haugen JE (2009) Pig meat quality from entire males. Animal 3:1497–1507PubMedCrossRefGoogle Scholar
  55. Macías-Oyarzún SO (2010) Determinación de la capacidad máxima de acumulación de proteína en jabalí (Sus scrofa L.) en crecimiento. Universidad Austral de Chile. Facultad de Ciencias Agrarias de la Escuela de AgronomíaGoogle Scholar
  56. Maehr DS, Belden RC, Land ED, Wilkins L (1990) Food habits of panthers in southwest Florida. J Wildlife Manage 54:420–423CrossRefGoogle Scholar
  57. Marchiori AF, Felício PE (2003) Quality of wild boar meat and commercial pork. Sci Agr 60:1–5CrossRefGoogle Scholar
  58. Markina FA, Sáez-Royuela C, De Garnica R (2004) Physical development of wild boar in the Cantabric Mountains, Álava, Northern Spain. Galemys 16:25–34Google Scholar
  59. Marsico G, Rasulo A, Dimatteo S, Tarricone S, Pinto F, Ragni M (2007) Pig, F1 (wild boar x pig) and wild boar meat quality. Ital J Anim Sci 6:701–703CrossRefGoogle Scholar
  60. Massei G, Genov PV (2004) The environmental impact of wild boar. Galemys 16(special):135–145Google Scholar
  61. Mattioli S, Pedone P (1995) Body growth in a confined wild boar population. Ibex J Mt Ecol 3:64–65Google Scholar
  62. Mazzoni DSR (1995) The wild boar management in a province of the central Italy. Ibex J Mt Ecol 3:213–216Google Scholar
  63. Moretti M (2014) Biometric data and growth rates of a mountain population of wild boar (Sus scrofa L.), Ticino, Switzerland. Ibex J Mt Ecol 3:56–59Google Scholar
  64. Mörlein D, Trautmann J, Gertheiss J, Meier-Dinkel L, Fischer J, Eynck HJ, Heres L, Looft C, Tholen E (2016) Interaction of skatole and androstenone in the olfactory perception of boar taint. J Agric Food Chem 64:4556–4565PubMedCrossRefGoogle Scholar
  65. Müller E, Moser G, Bartenschilager H, Geldermann H (2000) Trait values of growth, carcass and meat quality in Wild Boar, Meishan and Pietrain pigs as well as their crossbred generations. J Anim Breed Genet 117:189–202CrossRefGoogle Scholar
  66. Naccari F, Giofre F, Licata P, Martino D, Calo M, Parisi N (2004) Organochlorine pesticides and PCBs in wild boars from Calabria (Italy). Environ Monit Assess 96:191–202PubMedCrossRefGoogle Scholar
  67. Nii M, Hayashi T, Tani F, Niki A, Mori N, Fujishima-Kanaya N, Komatu M, Aikawa K, Awata T, Mikawa S (2006) Quantitative trait loci mapping for fatty acid composition traits in perirenal and back fat using a Japanese wild boar x Large White intercross. Anim Genet 37:342–347PubMedCrossRefGoogle Scholar
  68. Nowak RM, Walker EP (1999) Walker’s Mammals of the World (vol. 1)., 6th edn. Johns Hopkins University Press, BaltimoreGoogle Scholar
  69. Orłowska L, Rembacz W, Florek C (2013) Carcass weight, condition and reproduction of wild boars harvested in north-western Poland. Pest Manag Sci 69:367–370PubMedCrossRefGoogle Scholar
  70. Oshima I, Iwamoto H, Nakamura YN, Takayama K, Ono Y, Murakami T, Shiba N, Tabata S, Nishimura S (2009) Comparative study of the histochemical properties, collagen content and architecture of the skeletal muscles of wild boar crossbred pigs and commercial hybrid pigs. Meat Sci 81:382–390PubMedCrossRefGoogle Scholar
  71. Paleari MA, Moretti VM, Beretta G, Mentasti T, Bersani C (2003) Cured products from different animal species. Meat Sci 63:485–489PubMedCrossRefGoogle Scholar
  72. Paulsen P, Vali S, Bauer F (2011) Quality traits of wild boar mould-ripened salami manufactured with different selections of meat and fat tissue, and with and without bacterial starter cultures. Meat Sci 89:486–490PubMedCrossRefGoogle Scholar
  73. Pedone P, Mattioli S, Mattioli L (1995) Body size and growth patterns in wild boars of Tuscany, Central Italy. Ibex J Mt Ecol 3:66–68Google Scholar
  74. Postolache AN, Lazar R, Boisteanu PC (2010) Researchers on the characterization of physical and chemical parameters of refrigerated meat from wild boar sampled from the N-E part of Romania. Lucraria Stiintifice, Seria Zootehnie 54:193–197Google Scholar
  75. Prusa K, Nederveld H, Runnels PL, Li R, King VL, Crane JP (2011) Prevalence and relationships of sensory taint, 5a-androstenone and skatole in fat and lean tissue from the loin (Longissimus dorsi) of barrows, gilts, sows, and boars from selected abattoirs in the United States. Meat Sci 88:96–101PubMedCrossRefGoogle Scholar
  76. Quaresma MAG, Alves SP, Trigo-Rodrigues I, Pereira-Silva R, Santos N, Lemos JPC, Barreto AS, Bessa RJB (2011) Nutritional evaluation of the lipid fraction of feral wild boar (Sus scrofa scrofa) meat. Meat Sci 89:457–461PubMedCrossRefGoogle Scholar
  77. Quijada RP, Hodgkinson SM (2012) Potential protein deposition in the European wild boar (Sus scrofa L.). Chil J Agr Res 72:290–295CrossRefGoogle Scholar
  78. Ramanzin M, Amici A, Casoli C, Esposito L, Lupi P, Marsico G, Mattiello S, Olivieri O, Ponzetta MP, Russo C, Marinucci MT (2010) Meat from wild ungulates: ensuring quality and hygiene of an increasing resource. Ital J Anim Sci 9:e61Google Scholar
  79. Razmaite V, Svirmickas GJ, Siukscius A (2012) Effect of weight, sex and hunting period on fatty acid composition of intramuscular and subcutaneous fat from wild boar. Ital J Anim Sci 11:174–179CrossRefGoogle Scholar
  80. Rivero J, Hodgkinson SM, López-Villalobos N (2013) Definition of the breeding goal and determination of breeding objectives for European wild boar (Sus scrofa L.) in a semi-extensive production system. Livest Sci 157:38–47CrossRefGoogle Scholar
  81. Rosell C, Fernández-Llario P, Herrero J (2001) El jabalí (Sus scrofa Linnaeus, 1758). Galemys 13:1–25Google Scholar
  82. Sales J, Kotrba R (2013) Meat from wild boar (Sus scrofa L.): a review. Meat Sci 94:187–201PubMedCrossRefGoogle Scholar
  83. Sañudo C (2011) Atlas Mundial de Etnología Zootécnica. Editorial S.L. Servet Diseño y Comunicación, Zaragoza, SpainGoogle Scholar
  84. Schimpl A, Bauer F, Paulsen P (2010) Quality aspects of a spreadable raw sausage product manufactured from wild boar meat. Archiv für Lebensmittelhygiene 61:153–159Google Scholar
  85. Skewes O, Morales R (2006) Crianza de jabalí (Sus scrofa L.) en Chile. Distribución, tamaño y aspectos básicos de manejo. Agro-ciencia 22:29–36Google Scholar
  86. Skewes O, Morales R, González F, Lui J, Hofbauer P, Paulsen P (2008) Carcass and meat quality traits of wild boar (Sus scrofa L.) with 2n = 36 karyotype compared to those of phenotypically similar crossbreeds (2n = 37 and 2n = 38) raised under same farming conditions. 1. Carcass quantity and meat dressing. Meat Sci 80:1200–1204PubMedCrossRefGoogle Scholar
  87. Skobrák EB, Bodnár K, Jónás EM, Gundel J, Jávor A (2011) The comparison analysis of the main chemical composition parameters of wild boar meat and pork. Sci Pap: Anim Sci Biotechnol 44:105–112Google Scholar
  88. Spitz F (1986) Current state of knowledge of wild boar biology. Pig News Inf 7(2):171–175Google Scholar
  89. Tarricone S, Marsico G, Melodia L, Ragni M, Colangelo D, Karatosidi D, Rasulo A, Pinto F (2010) Meat quality of pig, F1, F2, reared and wild wild boars. Prog Nutr 12:261–271Google Scholar
  90. Townsend WE, Brown W, McCampbell HC, Davis CE (1978) Comparison of chemical, physical and sensory properties of loins from Yorkshire, crossbred and wild pigs. J Anim Sci 46:646–650CrossRefGoogle Scholar
  91. van Schalkwyk DL, Hoffman LC, Laubscher LA (2011) Game harvesting procedures and their effect on meat quality: the Africa experience. In: Anonymous Game meat hygiene in focus. Springer, Netherlands, pp 67–92CrossRefGoogle Scholar
  92. Weiler U, Font I, Furnols M, Fischer K, Kemmer H, Oliver MA, Gispert M, Dobrowolski A, Claus R (2000) Influence of differences in sensitivity of Spanish and German consumers to perceive androstenone on the acceptance of boar meat differing in skatole and androstenone concentrations. Meat Sci 54:297–304PubMedCrossRefGoogle Scholar
  93. Wenk C (2001) The role of dietary fibre in the digestive physiology of the pig. Anim Feed Sci Tech 90:21–33CrossRefGoogle Scholar
  94. Wilson DE, Reeder DM (2005) Mammal species of the world: a taxonomic and geographic reference, 3rd edn. Johns Hopkins University Press, BaltimoreGoogle Scholar
  95. Yoshihara I, Maruta K (1977) Gas chromatographic microdetermination of indole and skatole in gastrointestinal contents of domestic animals. Agric Biol Chem 41:2083–2085Google Scholar
  96. Żmijewski T, Korzeniowski W (2001) Technological properties of wild boars meat. Electronic J Pol Agric Univer 4 (
  97. Żochowska-Kujawska J, Lachowicz K, Sobczak M (2010b) The tenderisation of wild boar meat using a calcium chloride, kefir, wine and pineapple marinade. Electronic J Pol Agric Univer 13 (
  98. Żochowska-Kujawska J, Lachowicz K, Sobczak M (2012) Effects of fibre type and kefir, wine lemon, and pineapple marinades on texture and sensory properties of wild boar and deer longissimus muscle. Meat Sci 92:675–680PubMedCrossRefGoogle Scholar
  99. Żochowska-Kujawska J, Lachowicz K, Sobczak M, Bienkiewicz G (2010a) Utility for production of massaged products of selected wild boar muscles originating from wetlands and an arable area. Meat Sci 85:461–466PubMedCrossRefGoogle Scholar
  100. Żochowska-Kujawska J, Lachowicz K, Sobczak M, Gajowiecki L, Kotowicz M, Zych A, Medrala D (2007) Effects of massaging on hardness, rheological properties, and structure of four wild boar muscles of different fibre type content and age. Meat Sci 75:595–602PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lara Morán
    • 1
  • Kizkitza Insausti
    • 2
  • Luis Javier R. Barron
    • 1
  • Noelia Aldai
    • 1
    Email author
  1. 1.Lactiker Research Group – Quality and Safety of Foods from Animal Origin, Department of Pharmacy & Food Sciences, Faculty of PharmacyUniversity of the Basque Country (UPV/EHU)Vitoria-GasteizSpain
  2. 2.IS FOOD Institute for Innovation and Sustainable Development in Food Chain, College of Agricultural EngineeringPublic University of Navarra (UPNA)PamplonaSpain

Personalised recommendations