Skip to main content

Origin and Classification of Impacting Objects, and their Effects on the Earth Surface

  • Chapter
  • First Online:
Encyclopedic Atlas of Terrestrial Impact Craters

Abstract

The understanding of what we can observe nowadays needs the comprehension of the processes that contributed to shape our planet and the rest of the Solar System. The history of our Solar System began inside a great cold nebula of gas and dust (Safronov 1969). The more abundant elements were helium and hydrogen, and minor quantities of heavier elements were also present like carbon and silica and traces of more heavy elements like iron and nickel. Iron and nickel as all the other heavier elements were not part of the original elements of the cold cloud, and they were the consequence of the death of giant stars, synthesized in their interiors under extremely high pressures and temperatures and then disseminated into space after their final explosion, finally reaching the protoplanetary nebula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrens, T. J. (1993). Impact erosion of terrestrial planetary atmospheres. Annual Review of Earth and Planetary Sciences, 21(A94-10876 01-91), 525–555. 1993AREPS..21..525A.

    Article  Google Scholar 

  • Batygin, K., & Morbidelli, A. (2012). Dissipative divergence of resonant orbits. The Astronomical Journal, 145(1), 1.

    Google Scholar 

  • Bellot Rubio, L. R., Martinez Gonzales, M. J., Ruiz Herrera, L., Licandro, J., Martinez Delgado, D., Rodriguez Gil, P., et al. (2002). Modeling the photometric and dynamical behavior of Super-Schmidt meteors in the Earth’s atmosphere. Astronomy and Astrophysics, 389(2), 680–691. ISSN 0004-6361.

    Article  Google Scholar 

  • Benz, W., Slattery, W. L., Cameron, A. G. W., Ceplecha, Z., Borovička, J., ReVelle, D. O., Elford, W. G., Hawkes, R. L., Porubčan, V., & Šimek, M. (1998). Meteor phenomena and bodies. Space Science Reviews, 84(3), 327–471.

    Google Scholar 

  • Ceplecha, Z., Borovička, J., ReVelle, D. O., Elford, W. G., Hawkes, R. L., Porubčan, V., et al. (1998). Meteor phenomena and bodies. Space Science Reviews, 84(3), 327–471.

    Article  Google Scholar 

  • Cuk, M., & Stewart, S. T. (2012). Making the moon from a fast-spinning earth: a giant impact followed by resonant despinning. Science, 338(6110), 1047–1052. https://doi.org/10.1126/science.1225542.

    Article  Google Scholar 

  • Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. (2005). Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature, 435, 466–469. https://doi.org/10.1038/nature03676.

    Article  Google Scholar 

  • Hawkes, T. L., & Jones, J. (1975). MNRAS, 173(2), 339–356.

    Article  Google Scholar 

  • Hartman, W. K., & Davis, D. R. (1975). Satellite-sized planetesimal and Lunar origin. Icarus 24, 504–515.

    Google Scholar 

  • Hartmann, W. K., Phillips, R. J., & Taylor, G. J. (1986). Origin of the moon. In Proceedings of the Conference “Origin of the Moon” held in Kona, HI, October 13–16.

    Google Scholar 

  • Jacchia, L. G. (1955). The physical theory of meteors. VIII. Fragmentation as cause of the faint meteor anomaly. Astrophysical Journal, 121, 521. 1955ApJ…121..521J.

    Article  Google Scholar 

  • Komatsu, G., Senthil Kumar, P., Goto, K., Sekine, Y., Giri, C., & Matsui, T. (2014). Drainage systems of Lonar Crater, India: Contributions to Lonar Lake hydrology and crater degradation. Planetary and Space Science, 95, 45–55.

    Article  Google Scholar 

  • Lebedinets, V. N., & Shushkova, V. B. (1970). Micrometeorite sputtering in the ionosphere. Planetary and Space Science, 18(11), 1653–1659.

    Google Scholar 

  • Levison, H. F., Morbidelli, A., Tsiganis, K., Nesvorný, D., & Gomes, R. (2011). Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. The Astronomical Journal, 142(5), 152.

    Google Scholar 

  • Melosh, H. J. (2008). Did an impact blast away half of the Martian crust? Nature Geoscience, 1, 412–414. https://doi.org/10.1038/ngeo237.

    Article  Google Scholar 

  • Melosh, H. J., & Vickery, A. M. (1989). Impact erosion of the primordial atmosphere of Mars. Nature, 338(6215), 487–489.

    Article  Google Scholar 

  • Morbidelli, A., Levison, H. F., Tsiganis, K., & Gomes, R. (2005). Chaotic capture of Jupiter’s Trojan asteroids in the early solar system. Nature, 435, 462–465. https://doi.org/10.1038/nature03540.

    Article  Google Scholar 

  • Nesvorný, D. (2011). Young solar system’s fifth giant planet?. The Astrophysical Journal Letters, 742(2).

    Article  Google Scholar 

  • Nesvorný, D., & Morbidelli, A. (2012). Statistical study of the early solar system’s instability with four, five and six giant planets. The Astronomical Journal, 144.

    Google Scholar 

  • Öpik, E. J. (1958). Meteor Impact on Solid Surface. Irish Astronomical Journal, 5(1), 14.

    Google Scholar 

  • Safronov, V. S. (1969). Evolution of the protoplanetary cloud and formation of the earth and the planets, Mosca, Nauka. In: NASA TTF 677, 1972.

    Google Scholar 

  • Shuvalov, V., Dypvik, H., & Tsilkalas, F. (2002). Numerical simulations of the Mjølnir marine impact crater. Journa of Gophysical Research—Planets, 107(E7), 1-1–1-13.

    Google Scholar 

  • Tsiganis, K., Gomes. R., Morbidelli, A., & Levison, H. F. (2005). Origin of the orbital architecture of the giant planets of the Solar System. Nature, 435, 459–461. https://doi.org/10.1038/nature03539.

    Article  Google Scholar 

  • Verniani, F. (1969). Structure and fragmentation of meteoroids. Space Science Reviews, 10(2), 230–261.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Di Martino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Martino, M., Flamini, E., Staffieri, S. (2019). Origin and Classification of Impacting Objects, and their Effects on the Earth Surface. In: Flamini, E., Di Martino, M., Coletta, A. (eds) Encyclopedic Atlas of Terrestrial Impact Craters. Springer, Cham. https://doi.org/10.1007/978-3-030-05451-9_2

Download citation

Publish with us

Policies and ethics