Skip to main content

Social Media Group Structure and Its Goals: Building an Order

  • Conference paper
  • First Online:
Complex Networks and Their Applications VII (COMPLEX NETWORKS 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 813))

Included in the following conference series:

Abstract

Building the interrelation between goals and functions of on-line social groups and their topological properties allows for recognition of special communities and anomalies in on-line social media. Network structures of on-line groups are poorly studied as well as social aspects of their formation. Current research does an attempt to connect structure and function, and to order communities according to their thematics and topological features. We compared normal and anomalous networks, comprising the following types of interest: food, football, cinema, games, radical politics, commercial sex workers, and substance sellers. For measuring and ordering the networks we used measures, related to degree, clustering, and path properties, effectiveness, hyperbolicity, spreading characteristic, and modularity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Radical politic communities demonstrate a high fraction of subscribers included to a friendship network, higher clustering coefficient, and stronger interconnections between different communities inside the topic.

  2. 2.

    Source code is available at http://piluc.dsi.unifi.it/lasagne.

References

  1. Ahn, Y.Y., Han, S., Kwak, H., Moon, S., Jeong, H.: Analysis of topological characteristics of huge online social networking services. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, pp. 835–844. ACM, New York, NY, USA (2007). https://doi.org/10.1145/1242572.1242685

  2. Alstott, J., Bullmore, E., Plenz, D.: powerlaw: a python package for analysis of heavy-tailed distributions. PloS one 9(1), e85,777 (2014)

    Article  Google Scholar 

  3. Boguná, M., Pastor-Satorras, R.: Epidemic spreading in correlated complex networks. Phys. Rev. E 66(4), 047,104 (2002)

    Article  Google Scholar 

  4. Borassi, M., Coudert, D., Crescenzi, P., Marino, A.: On computing the hyperbolicity of real-world graphs. Algorithms-ESA 2015, pp. 215–226. Springer, Berlin (2015)

    Chapter  Google Scholar 

  5. Chepoi, V., Dragan, F.F., Estellon, B., Habib, M., Vaxès, Y.: Notes on diameters, centers, and approximating trees of \(\delta \)-hyperbolic geodesic spaces and graphs. Electron. Notes Discret. Math. 31, 231–234 (2008)

    Google Scholar 

  6. Chung, F.: Laplacians and the cheeger inequality for directed graphs. Ann. Comb. 9(1), 1–19 (2005)

    Article  MathSciNet  Google Scholar 

  7. Dong, G., et al.: Resilience of networks with community structure behaves as if under an external field. In: Proceedings of the National Academy of Sciences, p. 201801588 (2018)

    Google Scholar 

  8. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.: Critical phenomena in complex networks. Rev. Mod. Phys. 80(4), 1275 (2008)

    Article  Google Scholar 

  9. Ferrara, E.: A large-scale community structure analysis in facebook. EPJ Data Sci. 1(1), 9 (2012). https://doi.org/10.1140/epjds9

  10. Gao, L., Wang, W., Pan, L., Tang, M., Zhang, H.F.: Effective information spreading based on local information in correlated networks. Sci. Rep. 6, 38,220 (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133588/pdf/srep38220.pdf

  11. Gilarranz, L.J., Rayfield, B., Liñán-Cembrano, G., Bascompte, J., Gonzalez, A.: Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357(6347), 199–201 (2017)

    Article  Google Scholar 

  12. Gromov, M.: Hyperbolic groups. Essays in Group Theory, pp. 75–263. Springer, Berlin (1987)

    Chapter  Google Scholar 

  13. Guleva, V., Vaganov, D., Voloshin, D., Bochenina, K.: Topology of thematic communities in online social networks: a comparative study. International Conference on Computational Science, pp. 260–273. Springer, Berlin (2018)

    Google Scholar 

  14. Kolchinsky, A., Gates, A.J., Rocha, L.M.: Modularity and the spread of perturbations in complex dynamical systems. Phys. Rev. E 92(6), 060,801 (2015)

    Article  Google Scholar 

  15. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguná, M.: Hyperbolic geometry of complex networks. Phys. Rev. E 82(3), 036,106 (2010)

    Article  MathSciNet  Google Scholar 

  16. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87(19), 198,701 (2001)

    Article  Google Scholar 

  17. Moore, C., Newman, M.E.: Epidemics and percolation in small-world networks. Phys. Rev. E 61(5), 5678 (2000)

    Article  Google Scholar 

  18. Morone, F., Makse, H.A.: Influence maximization in complex networks through optimal percolation. Nature 524(7563), 65 (2015)

    Article  Google Scholar 

  19. Pei, S., Muchnik, L., Tang, S., Zheng, Z., Makse, H.A.: Exploring the complex pattern of information spreading in online blog communities. PloS one 10(5), e0126,894 (2015)

    Article  Google Scholar 

  20. Savage, D., Zhang, X., Yu, X., Chou, P., Wang, Q.: Anomaly detection in online social networks. Soc. Netw. 39, 62–70 (2014)

    Article  Google Scholar 

  21. Schank, T., Wagner, D.: Approximating clustering-coefficient and transitivity. Universität Karlsruhe, Fakultät für Informatik (2004)

    MATH  Google Scholar 

  22. Thom-Santelli, J., Muller, M.J., Millen, D.R.: Social tagging roles: publishers, evangelists, leaders. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1041–1044. ACM (2008)

    Google Scholar 

  23. Volchenkov, D., Volchenkova, L., Blanchard, P.: Epidemic spreading in a variety of scale free networks. Phys. Rev. E 66(4), 046,137 (2002)

    Article  Google Scholar 

  24. Wu, Y., Zhang, C.: Hyperbolicity and chordality of a graph. Electron. J. Comb. 18(1), 43 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We are grateful to Max Petrov for his help with data collection. This research is financially supported by The Russian Science Foundation, Agreement #17–71–30029 with co-financing of Bank Saint Petersburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Y. Guleva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vaganov, D.A., Guleva, V.Y., Bochenina, K.O. (2019). Social Media Group Structure and Its Goals: Building an Order. In: Aiello, L., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L. (eds) Complex Networks and Their Applications VII. COMPLEX NETWORKS 2018. Studies in Computational Intelligence, vol 813. Springer, Cham. https://doi.org/10.1007/978-3-030-05414-4_38

Download citation

Publish with us

Policies and ethics