Social Stratification from Networks of Leveling Ties

Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 813)


Social networks can be made of various kinds of ties, but (often implicit) assumptions embodied in network-analytic tools do not necessarily apply to all of them. Centrality indices, for instance, build on the assumption that it is always beneficial to add more ties. While it has been noted that networks of ties with a negative sentiment require different concepts of centrality, we here highlight ties that are neither positive nor negative to have, but an indication of commonality. This is exemplified by the derivation of socio-economic status from networks that indicate common class membership.


Social stratification Centrality Leveling ties Interval graphs 


  1. 1.
    Atkins, J., Boman, E., Hendrickson, B.: A spectral algorithm for seriation and the consecutive ones problem. SIAM J. Comput. 28(1), 297–310 (1998)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Borgatti, S.P., Mehra, A., Brass, D.J., Labianca, G.: Network analysis in the social sciences. Science 323(5916), 892–895 (2009)Google Scholar
  3. 3.
    Cartwright, D., Harary, F.: Structural balance: a generalization of heider’s theory. Psychol. Rev. 63(5), 277 (1956)Google Scholar
  4. 4.
    Cattin, M.F., Bersier, L.F., Banašek-Richter, C., Baltensperger, R., Gabriel, J.P.: Phylogenetic constraints and adaptation explain food-web structure. Nature 427(6977), 835–839 (2004)Google Scholar
  5. 5.
    Cohen, J.E.: Food webs and niche space. Monogr. Popul. Biol. 11, 1–189 (1978)Google Scholar
  6. 6.
    Connelly, R., Gayle, V., Lambert, P.S.: A review of occupation-based social classifications for social survey research. Methodol. Innov. 9, 2059799116638,003 (2016)Google Scholar
  7. 7.
    Domínguez-García, V., Johnson, S., Muñoz, M.A.: Intervality and coherence in complex networks. Chaos Interdiscip. J. Nonlinear Sci. 26(6), 065,308 (2016)MathSciNetGoogle Scholar
  8. 8.
    Erikson, R., Goldthorpe, J.H., Portocarero, L.: Intergenerational class mobility in three western european societies: England, France and Sweden. Br. J. Sociol. 30(4), 415–441 (1979)Google Scholar
  9. 9.
    Fishburn, P.C.: Interval graphs and interval orders. Discret. Math. 55(2), 135–149 (1985)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977)Google Scholar
  11. 11.
    Freeman, L.C.: Spheres, cubes and boxes: graph dimensionality and network structure. Soc. Netw. 5(2), 139–156 (1983)MathSciNetGoogle Scholar
  12. 12.
    Freeman, L.C.: Boxicity and the social context of Swedish literary criticism, 1881–1883. J. Soc. Biol. Struct. 9(2), 141–149 (1986)Google Scholar
  13. 13.
    Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pac. J. Math. 15(3), 835–855 (1965)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Ganzeboom, H.B.G., De Graaf, P.M., Treiman, D.J.: A standard international socio-economic index of occupational status. Soc. Sci. Res. 21(1), 1–56 (1992)Google Scholar
  15. 15.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. WH Freeman, New York (2002)Google Scholar
  16. 16.
    Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against physical mapping of DNA. J. Comput. Biol. 2(1), 139–152 (1995)Google Scholar
  17. 17.
    Goldthorpe, J.H., Llewellyn, C., Payne, C.: Social Mobility and Class Structure in Modern Britain. Oxford University Press, Oxford (1980)Google Scholar
  18. 18.
    Golumbic, M.C., Shamir, R.: Complexity and algorithms for reasoning about time: a graph-theoretic approach. J. ACM 40(5), 1108–1133 (1993)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Griffiths, D., Lambert, P.S.: Dimensions and boundaries: comparative analysis of occupational structures using social network and social interaction distance analysis. Sociol. Res. Online 17(2), 5 (2011)Google Scholar
  20. 20.
    Habib, M., McConnell, R., Paul, C., Viennot, L.: Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theor. Comput. Sci. 234(1), 59–84 (2000)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Heider, F.: Attitudes and cognitive organization. J. Psychol. 21(1), 107–112 (1946)Google Scholar
  22. 22.
    Kratochvil, J.: A special planar satisfiability problem and a consequence of its NP-completeness. Discret. Appl. Math. 52(3), 233–252 (1994)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Lambert, P.S., Bihagen, E.: Stratification research and occupation-based social classifications. Social Stratification: Trends and Processes, pp. 113–128. Ashgate, Farnham (2012)Google Scholar
  24. 24.
    Laumann, E.O.: Subjective social distance and urban occupational stratification. Am. J. Sociol. 71(1), 26–36 (1965)Google Scholar
  25. 25.
    Laumann, E.O., Guttman, L.: The relative associational contiguity of occupations in an urban setting. Am. Sociol. Rev. 31(2), 169–178 (1966)Google Scholar
  26. 26.
    Mitchell, J.C., Critchley, F.: Configurational similarity in three class contexts in british society. Sociology 19(1), 72–92 (1985)Google Scholar
  27. 27.
    Prandy, K., Lambert, P.S.: Marriage, social distance and the social space: an alternative derivation and validation of the cambridge scale. Sociology 37(3), 397–411 (2003)Google Scholar
  28. 28.
    Quest, M., Wegner, G.: Characterization of the graphs with boxicity \(\leqslant \)2. Discret. Math. 81(2), 187–192 (1990)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Roberts, F.S.: On the boxicity and cubicity of a graph. Recent Progress in Combinatorics, pp. 301–310. Academic Press, Cambridge (1969)Google Scholar
  30. 30.
    Roberts, F.S.: Graph Theory and Its Applications to Problems of Society. SIAM, Philadelphia (1978)zbMATHGoogle Scholar
  31. 31.
    Rosengren, K.: The Climate of Literature: Sweden’s Literary Frume of Reference, 1953–1976. Studentlitteratur, Lund (1983)Google Scholar
  32. 32.
    Ruggles, S., Genadek, K., Goeken, R., Grover, J., Sobek, M.: Integrated Public Use Microdata Series: Version 7.0 [dataset]. University of Minnesota, Minneapolis (2017)Google Scholar
  33. 33.
    Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603 (1966)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Schoch, D., Brandes, U.: Re-conceptualizing centrality in social networks. Eur. J. Appl. Math. 27(6), 971–985 (2016)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Stewart, A., Prandy, K., Blackburn, R.M.: Measuring the class structure. Nature 245(5426), 415–417 (1973)Google Scholar
  36. 36.
    Stewart, A., Prandy, K., Blackburn, R.M.: Social Stratification and Occupations. Springer, Berlin (1980)Google Scholar
  37. 37.
    Stouffer, D.B., Camacho, J., Amaral, L.A.N.: A robust measure of food web intervality. Proc. Natl. Acad. Sci. 103(50), 19015–19020 (2006)Google Scholar
  38. 38.
    Treiman, D.J.: Occupational Prestige in Comparative Perspective. Academic Press, New York (1977)Google Scholar
  39. 39.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of SociologyThe University of ManchesterManchesterUnited Kingdom
  2. 2.Chair of Social NetworksETH ZurichZurichSwitzerland

Personalised recommendations