Networking Strategies and Efficiency in Human Communication Networks

Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 813)


Individuals communicate with each other strategically to improve their access to information and to capitalize on social connections in attaining personal and professional goals. Yet, we know little about how specific networking strategies impact the efficiency of communication networks both at a global and local level. Here, we perform data-driven computer simulations that examine the effect of two predominant networking strategies: (i) structural change, involving addition and deletion of communication channels and (ii) frequency change, involving increase or decrease of communication on existing channels. In our proposed framework, these two strategies encompass the spectrum of exploring new connections and exploiting existing ones, and are implemented based on the generic social processes of interaction reciprocity and triadic closure. Three main results emerge from our simulations. First, our structural and frequency change strategies designed to reflect human behavior differ from null models represented by random strategies. Second, they have distinct effects on global and local efficiency. Third, these strategies work consistently across heterogeneous network structures and various network evolution scenarios. Taken together, our findings reassess conventional wisdom about the effectiveness of networking strategies and introduce novel frameworks to study the impact of networking via modeling approaches informed by social and communication theory.


Networking Strategies Efficiency Reciprocity Triadic Closure Human Communication Network Simulations 



This research was partly supported by the National Science Foundation under Grant No. IIS-1755873. The authors would like to thank Zachary Gibson and Nick Hagar for their comments on an earlier version of the manuscript.


  1. 1.
    Aral, S., Van Alstyne, M.: The diversity-bandwidth trade-off. Am. J. Sociol. 117(1), 90–171 (2011)CrossRefGoogle Scholar
  2. 2.
    Arrigo, F., Benzi, M.: Updating and downdating techniques for optimizing network communicability. SIAM J. Sci. Comput. 38(1), B25–B49 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2), 235–256 (2002)CrossRefGoogle Scholar
  4. 4.
    Beygelzimer, A., Grinstein, G., Linsker, R., Rish, I.: Improving network robustness by edge modification. Phys. A: Stat. Mech. Appl. 357(3), 593–612 (2005)CrossRefGoogle Scholar
  5. 5.
    Block, P.: Reciprocity, transitivity, and the mysterious three-cycle. Soc. Netw. 40, 163–173 (2015)CrossRefGoogle Scholar
  6. 6.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks : Structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Braess, D., Nagurney, A., Wakolbinger, T.: On a paradox of traffic planning. Transp. Sci. 39(4), 446–450 (2005)CrossRefGoogle Scholar
  8. 8.
    Brass, D.J., Galaskiewicz, J., Greve, H.R., Tsai, W.: Taking stock of networks and organizations: a multilevel perspective. Acad. Manag. J. 47, 795–817 (2004)Google Scholar
  9. 9.
    Buchanan, M.: The best is yet to come. Nature 447(39)Google Scholar
  10. 10.
    Buhl, J., Gautrais, J., Solé, R.V., Kuntz, P., Valverde, S., Deneubourg, J.L., Theraulaz, G.: Efficiency and robustness in ant networks of galleries. Eur. Phys. J. B 42(1), 123–129 (2004)CrossRefGoogle Scholar
  11. 11.
    Burt, R.S.: Structural Holes: The Social Structure of Competition. Harvard University Press, Cambridge (1992)Google Scholar
  12. 12.
    Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: Percolation on random graphs. Phys. Rev. Lett. 85, 5468–5471 (2000)CrossRefGoogle Scholar
  13. 13.
    Chan, H., Akoglu, L., Tong, H.: Make it or break it: Manipulating robustness in large networks. In: Proceedings of the 2014 SIAM International Conference on Data Mining, pp. 325–333 (2014)Google Scholar
  14. 14.
    Chen, C., Tong, H., Prakash, B.A., Eliassi-Rad, T., Faloutsos, M., Faloutsos, : C.: Eigen-optimization on large graphs by edge manipulation. ACM Trans. Knowl. Discov. Data 10(4), 49:1–49, 30 (2016)Google Scholar
  15. 15.
    Dube, D.E.: This is how much time you spend on work emails every day, according to a Canadian survey.
  16. 16.
    Dunbar, R.I.M.: The social brain hypothesis. Evol. Anthropol.: Issues, News, and Rev. 6(5), 178–190 (1998)CrossRefGoogle Scholar
  17. 17.
    Faust, K.: A puzzle concerning triads in social networks: graph constraints and the triad census. Soc. Netw. 32(3), 221–233 (2010)CrossRefGoogle Scholar
  18. 18.
    Garimella, K., De Francisci Morales, G., Gionis, A., Mathioudakis, M.: Reducing controversy by connecting opposing views. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM 2017, pp. 81–90 (2017)Google Scholar
  19. 19.
    He, Z.L., Wong, P.K.: Exploration vs. exploitation: an empirical test of the ambidexterity hypothesis. Organ. Sci. 15(4), 481–494 (2004)CrossRefGoogle Scholar
  20. 20.
    Kunegis, J.: Konect: The koblenz network collection. In: Proceedings of the 22nd International Conference on World Wide Web, WWW 2013 Companion, pp. 1343–1350 (2013)Google Scholar
  21. 21.
    Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87(19) (2001)Google Scholar
  22. 22.
    Leskovec, J., Krevl, A.: SNAP Datasets: stanford large network dataset collection (2014).
  23. 23.
    Migliano, A.B., Page, A.E., Gómez-Gardeñes, J., Salali, G.D., Viguier, S., Dyble, M., Thompson, J., Chaudhary, N., Smith, D., Strods, J., Mace, R., Thomas, M.G., Latora, V., Vinicius, L.: Characterization of hunter-gatherer networks and implications for cumulative culture. Nat. Hum. Behav. 1, 0043 (2017)CrossRefGoogle Scholar
  24. 24.
    Newman, M.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Oldroyd, J.B., Morris, S.S.: Catching falling stars: a human resource response to social capital’s detrimental effect of information overload on star employees. Acad. Manag. Rev. 37(3), 396–418 (2012)CrossRefGoogle Scholar
  26. 26.
    Papagelis, M.: Refining social graph connectivity via shortcut edge addition. ACM Trans. Knowl. Discov. Data 10(2), 12:1–12, 35 (2015)Google Scholar
  27. 27.
    Ronellenfitsch, H., Katifori, E.: Global optimization, local adaptation, and the role of growth in distribution networks. Phys. Rev. Lett. 117, 138,301 (2016)CrossRefGoogle Scholar
  28. 28.
    Siciliano, M.D., Welch, E.W., Feeney, M.K.: Network exploration and exploitation: professional network churn and scientific production. Soc. Netw. 52, 167–179 (2018)CrossRefGoogle Scholar
  29. 29.
    Squartini, T., Picciolo, F., Ruzzenenti, F., Garlaschelli, D.: Reciprocity of weighted networks. Sci. Rep. 3, 2729 (2013)CrossRefGoogle Scholar
  30. 30.
    Vissa, B.: Agency in action: entrepreneurs’ networking style and initiation of economic exchange. Organ. Sci. 23(2), 492–510 (2012)CrossRefGoogle Scholar
  31. 31.
    Watts, D., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Northwestern UniversityEvanstonUSA

Personalised recommendations