Skip to main content

Fast Variables Determine the Epidemic Threshold in the Pairwise Model with an Improved Closure

  • Conference paper
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 812))

Abstract

Pairwise models are widely used to model epidemic spread on networks. This includes the modelling of susceptible-infected-removed (SIR) epidemics on regular networks and extensions to SIS dynamics and contact tracing on more exotic networks exhibiting degree heterogeneity, directed and/or weighted links and clustering. However, extra features of the disease dynamics or of the network lead to an increase in system size and analytical tractability becomes problematic. Various “closures” can keep the system tractable. Focusing on SIR epidemics on regular but clustered networks, we show that even for the most complex closure we can determine the epidemic threshold as an asymptotic expansion in terms of the clustering coefficient. We do this by exploiting the presence of a system of fast variables, specified by the correlation structure of the epidemic, whose steady state determines the epidemic threshold. While we do not find the steady state analytically, we create an elegant asymptotic expansion of it. We validate this new threshold by comparing it to the numerical solution of the full system and find excellent agreement over a wide range of values of the clustering coefficient, transmission rate and average degree of the network. The technique carries over to pairwise models with other closures [1], and we note that the epidemic threshold will be model dependent. This emphasises the importance of model choice when dealing with realistic outbreaks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barnard, R.C., Berthouze, L., Simon, P.L., Kiss, I.Z.: Epidemic threshold in pairwise models for clustered networks: closures and fast correlations. arXiv preprint arXiv:1806.06135 (2018)

  2. Eames, K.T.: Modelling disease spread through random and regular contacts in clustered populations. Theor. Popul. Biol. 73(1), 104–111 (2008)

    Google Scholar 

  3. Eames, K.T., Keeling, M.J.: Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc. Natl. Acad. Sci. 99(20), 13330–13335 (2002)

    Google Scholar 

  4. House, T., Davies, G., Danon, L., Keeling, M.J.: A motif-based approach to network epidemics. Bull. Math. Biol. 71(7), 1693–1706 (2009)

    Google Scholar 

  5. House, T., Keeling, M.J.: The impact of contact tracing in clustered populations. PLoS Comput. Biol. 6(3), e1000,721 (2010)

    Google Scholar 

  6. Karrer, B., Newman, M.E.: Message passing approach for general epidemic models. Phys. Rev. E 82(1), 016,101 (2010)

    Google Scholar 

  7. Karrer, B., Newman, M.E.: Random graphs containing arbitrary distributions of subgraphs. Phys. Rev. E 82(6), 066,118 (2010)

    Google Scholar 

  8. Keeling, M.J.: The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. Lond. B Biol. Sci. 266(1421), 859–867 (1999)

    Google Scholar 

  9. Kiss, I.Z., Miller, J.C., Simon, P.L.: Mathematics of Epidemics on Networks. Springer, Berlin (2017)

    Google Scholar 

  10. Li, J., Li, W., Jin, Z.: The epidemic model based on the approximation for third-order motifs on networks. Math. Biosci. 297, 12–26 (2018)

    Google Scholar 

  11. Lindquist, J., Ma, J., Van den Driessche, P., Willeboordse, F.H.: Effective degree network disease models. J. Math. Biol. 62(2), 143–164 (2011)

    Google Scholar 

  12. Miller, J.C.: Percolation and epidemics in random clustered networks. Phys. Rev. E 80(2), 020,901 (2009)

    Google Scholar 

  13. Miller, J.C.: Spread of infectious disease through clustered populations. J. R. Soc. Interface 6, rsif–2008 (2009)

    Google Scholar 

  14. Miller, J.C., Slim, A.C., Volz, E.M.: Edge-based compartmental modelling for infectious disease spread. J. R. Soc. Interface 9(70), 890–906 (2012)

    Google Scholar 

  15. Miller, J.C., Volz, E.M.: Model hierarchies in edge-based compartmental modeling for infectious disease spread. J. Math. Biol. 67(4), 869–899 (2013)

    Google Scholar 

  16. Newman, M.E.: Random graphs with clustering. Phys. Rev. Lett. 103(5), 058,701 (2009)

    Google Scholar 

  17. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925 (2015)

    Google Scholar 

  18. Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 63(6), 066,117 (2001)

    Google Scholar 

  19. Rand, D.: Correlation equations and pair approximations for spatial ecologies. Advanced Ecological Theory: Principles and Applications, vol. 100. Blackwell Science, London (1999)

    Google Scholar 

  20. Rattana, P., Blyuss, K.B., Eames, K.T., Kiss, I.Z.: A class of pairwise models for epidemic dynamics on weighted networks. Bull. Math. Biol. 75(3), 466–490 (2013)

    Google Scholar 

  21. Ritchie, M., Berthouze, L., Kiss, I.Z.: Beyond clustering: mean-field dynamics on networks with arbitrary subgraph composition. J. Math. Biol. 72(1–2), 255–281 (2016)

    Google Scholar 

  22. Sharkey, K.J., et al.: Pair-level approximations to the spatio-temporal dynamics of epidemics on asymmetric contact networks. J. Math. Biol. 53(1), 61–85 (2006)

    Google Scholar 

  23. Sherborne, N., Miller, J.C., Blyuss, K.B., Kiss, I.Z.: Mean-field models for non-markovian epidemics on networks. J. Math. Biol. 76(3), 755–778 (2018)

    Google Scholar 

  24. Trapman, P.: On analytical approaches to epidemics on networks. Theor. Popul. Biol. 71(2), 160–173 (2007)

    Google Scholar 

  25. Volz, E.M., Miller, J.C., Galvani, A., Meyers, L.A.: Effects of heterogeneous and clustered contact patterns on infectious disease dynamics. PLoS Comput. Biol. 7(6), e1002,042 (2011)

    Google Scholar 

Download references

Acknowledgments

István Z. Kiss acknowledges support from the Leverhulme Trust Research Project Grant (RPG-2017-370). Péter L. Simon acknowledges support from Hungarian Scientific Research Fund, OTKA, (grant no. 115926). Joel C. Miller acknowledges support from Global Good.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Z. Kiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kiss, I.Z., Miller, J.C., Simon, P.L. (2019). Fast Variables Determine the Epidemic Threshold in the Pairwise Model with an Improved Closure. In: Aiello, L., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L. (eds) Complex Networks and Their Applications VII. COMPLEX NETWORKS 2018. Studies in Computational Intelligence, vol 812. Springer, Cham. https://doi.org/10.1007/978-3-030-05411-3_30

Download citation

Publish with us

Policies and ethics