Skip to main content

Extraction of Nano Cellulose Fibres and Their Eco-friendly Polymer Composite

  • Chapter
  • First Online:
Book cover Sustainable Polymer Composites and Nanocomposites

Abstract

This book chapter provides an overview of recent progress made in the area of nano-fibrillated cellulose (NFC) based nanocomposites as new bio-based products. Unlike Petroleum based and synthetic polymer nanocomposite, NFC polymer nanocomposite has many advantages due to low weight, reduced tool wearing, recyclable and biodegradable properties. The types of cellulose nanofibrils covered are those mechanical refined extracted and acid-hydrolysed plants biomass. The applications and new advances covered in this book chapter are the use of cellulose nanofibrils to reinforce polymer. The study shows that bio-composite from nanofibrillated cellulose is a good replacement in the field of medicine, automobile and construction due to their size and the ability to undergo surface chemical modification.

The original version of this chapter was inadvertently published with the incorrect author sequence and corresponding author. The correction to this chapter is available at https://doi.org/10.1007/978-3-030-05399-4_48

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

References

  1. Brown TD, Dalton PD, Hutmacher DW (2016) Melt electrospinning today: an opportune time for an emerging polymer process. Prog Polym Sci 56:116–166

    Article  CAS  Google Scholar 

  2. He K, Huo H, Zhang Q, He D, An F, Wang M, Walsh MP (2005a) Oil consumption and CO2 emissions in China’s road transport: current status, future trends, and policy implications. Energy Policy 33(12):1499–1507

    Google Scholar 

  3. He MC, Xie HP, Peng SP, Jiang YD (2005b) Study on rock mechanics in deep mining engineering. Chin J Rock Mechan Eng 24(16):2803–2813

    Google Scholar 

  4. Trache D, Hussin MH, Chuin CTH, Sabar S, Fazita MN, Taiwo OF, Hassan TM, Haafiz MM (2016) Microcrystalline cellulose: isolation, characterization and bio-composites application—a review. Int J Biol Macromole 93:789–804

    Google Scholar 

  5. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10):3276–3278

    Google Scholar 

  6. Cheung HY, Ho MP, Lau KT, Cardona F, Hui D (2009) Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos B Eng 40(7):655–663

    Article  CAS  Google Scholar 

  7. Mansor MR, Sapuan SM, Zainudin ES, Nuraini AA, Hambali A (2013) Hybrid natural and glass fibres reinforced polymer composites material selection using analytical hierarchy process for automotive brake lever design. Mater Des 51:484–492

    Article  CAS  Google Scholar 

  8. Marsh G (2003) Next step for automotive materials. Mater Today 6(4):36–43 (Elsevier)

    Google Scholar 

  9. Balakrishnan H, Hassan A, Imran M, Wahit MU (2012) Toughening of polylactic acid nanocomposites: a short review. Polym-Plast Technol Eng 51(2):175–192

    Article  CAS  Google Scholar 

  10. Abe K, Nakatsubo F, Yano H (2009) High-strength nanocomposite based on fibrillated chemi-thermomechanical pulp. Compos Sci Technol 69(14):2434–2437

    Article  CAS  Google Scholar 

  11. Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. AngewandteChemie Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  12. Abdul Khalil HPS, Bhat AH, IreanaYusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979

    Google Scholar 

  13. Haafiz MM, Hassan A, HPS AK, Owolabi AF, Marliana MM, Arjmandi R, Inuwa IM, Fazita MR, Nurul MR (2017) Cellulose nanowhiskers from oil palm empty fruit bunch biomass as green fillers. Cellulose-Reinforced Nanofibre Compos 241

    Google Scholar 

  14. Owolabi AWT, Ghazali A, Wanrosli WD, Abbas FMA (2016) Effect of alkaline peroxide pre-treatment on microfibrillated cellulose from oil palm fronds rachis amenable for pulp and paper and bio-composite production. BioResources 11(2):3013–3026

    Google Scholar 

  15. Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941

    Article  CAS  Google Scholar 

  16. Pandey JK, Kumar AP, Misra M, Mohanty AK, Drzal LT, Singh RP (2005) Recent advances in biodegradable nanocomposites. J Nanosci Nanotechnol 5:497–526

    Article  CAS  Google Scholar 

  17. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691

    Google Scholar 

  18. Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M et al (2009) Nanoscale cellulose films with different crystallinities and mesostructures—their surface properties and interaction with water. Langmuir 25(13):7675–7685

    Article  CAS  Google Scholar 

  19. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci 28:815–827

    Google Scholar 

  20. Wang YX, Tian HF, Zhang LN (2010) Role of starch nanocrystals and cellulose whiskers in synergistic reinforcement of waterborne polyurethane. Carbohydr Polym 80(3):665–671

    Google Scholar 

  21. Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784

    Article  CAS  Google Scholar 

  22. Sorrentino A, Vittoria GGV (2007) Potential perspectives of bionanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95

    Article  CAS  Google Scholar 

  23. Lamaming J, Hashim R, Sulaiman O, Leh CP, Sugimoto T, Nordin NA (2015) Cellulose nanocrystals isolated from oil palm trunk. Carbohydr Polym 127:202–208

    Google Scholar 

  24. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364

    Google Scholar 

  25. Bataille P, Ricard L, Sapieha S (1989) Effects of cellulose fibers in polypropylene composites. Polym Compos 10:103–108

    Article  CAS  Google Scholar 

  26. Hafren J, Zou WB, Cordova A (2006) Heterogeneous ‘organoclick’ derivatization of polysaccharides. Macromol Rapid Commun 27:1362–1366

    Article  CAS  Google Scholar 

  27. Gruber E, Granzow C (1996) Preparing cationic pulp by graft copolymerisation. 1. Synthesis and characterization. Papier 50:293

    Google Scholar 

  28. Bonini C, Heux L, Cavaille JY, Lindner P, Dewhurst C, Terech P (2002) Rodlike cellulose whiskers coated with surfactant: a small-angle neutron scattering characterization. Langmuir 18:3311–3314

    Article  CAS  Google Scholar 

  29. Kim DY, Nishiyama Y, Kuga S (2002) Surface acetylation of bacterial cellulose. Cellulose 9:361–367

    Article  CAS  Google Scholar 

  30. Gousse C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575

    Article  CAS  Google Scholar 

  31. Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45

    Article  CAS  Google Scholar 

  32. Habibi Y, Heux L, Mahrouz M, Vignon MR (2008) Morphological and structural study of seed pericarp of Opuntia ficus-indica prickly pear fruits. Carbohydr Polym 72(1):102–112

    Google Scholar 

  33. Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296

    Article  CAS  Google Scholar 

  34. Iwatake A, Nogi M, Yano H (2008) Cellulose nanofibre-reinforced polylactic acid. Compos Sci Technol 68(9):2103–2106

    Google Scholar 

  35. Behrens BA, Doege E, Reinsch S, Telkamp K, Daehndel H, Specker A (2007) Precision forging processes for high-duty automotive components. J Mater Process Technol 185(1):139–146

    Article  CAS  Google Scholar 

  36. Kosior E, Braganca RM, Fowler P (2006) Lightweight compostable packaging: literature review. Waste Resour Action Program 26:1–48

    Google Scholar 

  37. Kyrikou I, Briassoulis D (2007) Biodegradation of agricultural plastic films: a critical review. J Polym Environ 15(2):125–150

    Article  CAS  Google Scholar 

  38. Haafiz MM, Eichhorn SJ, Hassan A, Jawaid M (2013) Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohyd Polym 93(2):628–634

    Article  CAS  Google Scholar 

  39. Haafiz MM, Hassan A, Khalil HA, Fazita MN, Islam MS, Inuwa IM, Marliana MM, Hussin MH (2016) Exploring the effect of cellulose nanowhiskers isolated from oil palm biomass on polylactic acid properties. Int J Biol Macromol 85:370–378

    Article  CAS  Google Scholar 

  40. Ray SS, Yamada K, Okamoto M, Fujimoto Y, Ogami A, Ueda K (2003) New polylactide/layered silicate nanocomposites. 5. Designing of materials with desired properties. Polymer 44(21):6633–6646

    Google Scholar 

  41. Dufresne A, Kellerhals MB, Witholt B (1999) Transcrystallization in mcl-PHAs/cellulose whiskers composites. Macromolecules 32(22):7396–7401

    Article  CAS  Google Scholar 

  42. Abdulkhani A, Hosseinzadeh J, Dadashi S, Mousavi M (2015) A study of morphological, thermal, mechanical and barrier. properties of PLA based biocomposites prepared with micro and nano sized cellulosic fibers. Cell Chem Technol 49(7–8):597–605

    Google Scholar 

  43. Evans JD, Sikdar SK (1990) Biodegradable plastics: an idea whose time has come? Chem Technol 20:38–42

    CAS  Google Scholar 

  44. Plackett D, Vázquez A (2004) Natural polymer sources. In: Baillie Caroline (ed) Green composites polymer composites and the environment. Woodhead Publishing Ltd/CRC Press LLC, Cambridge, pp 123–153

    Google Scholar 

  45. Kunioka M, Tamaki A, Doi Y (1989) Crystalline and thermal properties of bacterial copolyesters:poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules 22:694

    Article  CAS  Google Scholar 

  46. Ma X, Yu J, Ma Y (2005) Urea and formamide as a mixed plasticizer for thermoplastic wheat flour. Carbohydr Polym 60:111. Yang J-H, Yu J-G, Ma X (2006) Preparation and properties of etylenebisformamide. Carbohydr Polym 63(2006):218

    Google Scholar 

  47. Abdul Khalil HPS, Hanida S, Kang SCW, NikFuaad NA (2007) Agro-hybridcomposite: the effects on mechanical and physical properties of oil palm fiber(EFB)/glass hybrid reinforced polyester composites. J Reinf Plast Compos 26:203–218

    Article  CAS  Google Scholar 

  48. Adeosun SO, Lawal GI, Balogun SA, Akpan EI (2012) Review of green polymer nanocomposites. J Miner Mater Charact Eng 11(04):385

    Google Scholar 

  49. Dufresne A (2003) Interfacial phenomena in nanocomposites based on polysaccharide nanocrystals. Compos Interfaces 10(4–5):369–388

    Article  CAS  Google Scholar 

  50. Lai SM, Don TM, Huang YC (2006) Preparation and properties of biodegradable thermoplastic starch/poly(hydroxyl butyrate) blends. J Appl Polym Sci 100:2371–2379

    Article  CAS  Google Scholar 

  51. Jang WY, Shin BY, Lee TX, Narayan R (2007) Thermal properties and morphology of biodegradable PLA/starch compatibilized blends. J Ind Eng Chem 13:457–464

    CAS  Google Scholar 

  52. Sarazin P, Li G, Orts WJ, Favis BD (2008) Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 49:599–609

    Article  CAS  Google Scholar 

  53. Durango AM, Soares NFF, Benevides S, Teixeira J, Carvalho M, Wobeto C et al (2006) Development and evaluation of an edible antimicrobial film based on yam starch and chitosan. Packaging Technol Sci 19:55–59

    Article  CAS  Google Scholar 

  54. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A Appl Sci Manuf 41(10):1345–1367

    Article  CAS  Google Scholar 

  55. Mondragón M, Arroyo K, Romero-García J (2008) Biocomposites of thermoplastic starch with surfactant. Carbohyd Polym 74:201–208

    Article  CAS  Google Scholar 

  56. Piyada K, Waranyou S, Thawien W (2013) Mechanical, thermal and structural properties of rice starch films reinforced with rice starch nanocrystals. Int Food Res J 20:439–449

    CAS  Google Scholar 

  57. Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. EurPolym J 49:950–956

    CAS  Google Scholar 

  58. Plackett D, Andersen TL, Pedersen WB, Nielsen L (2003) Biodegradable composites based on l-polylactide and jute fibres. Compos Sci Technol 63:1287–1296

    Article  CAS  Google Scholar 

  59. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641

    Article  CAS  Google Scholar 

  60. Pandey JK, Ahn SH, Lee CS, Mohanty AK, Misra M (2010) Recent advances in the application of natural fibre based composites. Macromol Mater Eng 295(11):975–989

    Article  CAS  Google Scholar 

  61. Lee SY, Kang IA, Doh GH, Yoon HG, Park BD, Wu Q (2008) Thermal and mechanical properties of wood flour/talc-filled polylactic acid composites: effect of filler content and coupling treatment. J Thermoplast Compos Mater 21(3):209–223

    Article  CAS  Google Scholar 

  62. Qu P, Gao Y, Wu G, Zhang L (2010) Nanocomposites of poly (lactic acid) reinforced with cellulose nanofibrils. BioResources 5(3):1811–1823

    CAS  Google Scholar 

  63. Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fibre reinforced PLA with microfibrillated cellulose. Compos A Appl Sci Manuf 40(4):469–475

    Article  CAS  Google Scholar 

  64. Kim JP, Yoon T-H, Mun SP, Rhee JM, Lee JS (2006) Wood-polyethylene composites using ethylene-vinyl alcohol copolymer as adhesion promoter. Bioresource Biotechnol 97:494–499

    Article  CAS  Google Scholar 

  65. Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fibre treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437–1447

    Article  CAS  Google Scholar 

  66. Qin C, Soykeabkaew N, Xiuyuan N, Peijs T (2008) The effect of fibre volume fraction and mercerization on the properties of all cellulose composites. Carbohydr Polym 71:458–467

    Google Scholar 

  67. Khalfallah M, Abbès B, Abbès F, Guo Y, Marcel V, Duval A, Vanfleteren F, Rousseau F (2014) Innovative flax tapes reinforced acrodur biocomposites: a new alternative for automotive applications. Mater Des 64:116–126

    Article  Google Scholar 

  68. Chen W, Yu H, Liu Y, Chen P, Zhang M, Yunfei H (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pre-treatments. Carbohyd Polym 83:1804–1811

    Article  CAS  Google Scholar 

  69. Tiffany A, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88

    Google Scholar 

  70. Herrera N, Salaberria AM, Mathew AP, Oksman K (2016) Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: effects on mechanical, thermal and optical properties. Compos A Appl Sci Manuf 83:89–97

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Federal Institute of Industrial Research Oshodi Nigeria and the Kaduna State University, Nigeria for their role in the successful completion of this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bashiru Kayode Sodipo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sodipo, B.K., Owolabi, F.A.W.T. (2019). Extraction of Nano Cellulose Fibres and Their Eco-friendly Polymer Composite. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_8

Download citation

Publish with us

Policies and ethics