Skip to main content

Synthesis, Characterization and Application of Bio-based Polyurethane Nanocomposites

  • Chapter
  • First Online:

Abstract

Polyurethane (PUs) is gaining immense interest as a speciality polymer for various high-end applications. Vegetable oil has gained momentous attention as a valuable renewable precursor and a potential alternative to the current petro-based polyol for the synthesis of PUs. The concept of reinforcing nanofiller into vegetable oil-based PU matrix has gained huge research interest for the development of bio-based PU nanocomposites with tailor-made properties. The addition of nanofiller into bio-based PU nanocomposites has led to the improvement of thermal, mechanical, optical and physicochemical properties. This chapter will deal with the detailed insight regarding the synthesis, characterization of bio-based PUs nanocomposites from various vegetable oil incorporated with different nanofillers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

PUs:

Polyurethane

MMT:

Montmorillonite

VOs:

Vegetable oils

MDI:

Methylene diisocyanate

TDI:

Toluene diisocyanate

HDI:

Hexamethylene diisocyanate

IPDI:

Isophorone diisocyanate

JCO:

Jatropha curcas oil

CO:

Castor oil

PU/NS:

Polyurethane/silica nanocomposites

NS:

Nano silica

TGA:

Thermogravimetric analysis

DTG:

Derivative thermo-gravimetric

DSC:

Differential scanning calorimetry

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

FTIR:

Fourier transform infrared spectroscopy

Ea:

Activation energy

Tm:

Melting temperature

Tg:

Glass transition temperature

E′:

Storage modulus

E″:

Loss modulus

MBPU:

Modified bio-based polyurethane

MCO:

Modified castor oil

HBPUS:

Hyper branched polyurethane

GO:

Graphene oxide

RGO:

Reduced graphene oxide

f-RGO:

Phytoextract-RGO

MWCNTs:

Multiwall carbon nanotubes

XRD:

X-ray diffraction

BET:

Brunauer–Emmett–Teller theory

IPN:

Interpenetrating polymer network

EP:

Epoxy

PU/EP:

Polyurethane/epoxy

DMA:

Dynamic mechanical analysis

APTES:

Aminopropyltriethoxy silane

WPU:

Waterborne polyurethane

SMT:

Silylated sodium montmorillonite

SHT:

Silylated halloysite nanotubes

POBUA:

Palm oil and methylene diisocyanate based polyurethane acrylate

EPOLA:

Epoxidized palm oil acrylate

PCL:

Poly(e-caprolactone) diol

UPCEA:

Poly-(urethane-esteramide)

TiO2:

Titanium dioxide

EDX:

Energy dispersive X-ray spectroscopy

WAXD:

Wide-angle X-ray scattering

ECNC:

E. Globulus derived cellulose nanocrystals

References

  1. Nohra B, Candy L, Blanco JF, Guerin C, Raoul Y, Mouloungui Z (2013) From petrochemical polyurethanes to biobased polyhydroxyurethanes. Macromolecules 46(10):3771–3792

    Article  CAS  Google Scholar 

  2. Shen L, Haufe J, Patel MK (2009) Product overview and market projection of emerging bio-based plastics PRO-BIP. Report for European polysaccharide network of excellence (EPNOE) and European Bioplastics 243:1–245

    Google Scholar 

  3. Berthier JC (2009) Polyurethane PUR. Techniques de lingénieur

    Google Scholar 

  4. Bayer O (1947) Das di-isocyanat-polyadditionsverfahren (polyurethane). Angew Chem 59(9):257–272

    Article  Google Scholar 

  5. Jincheng W, Shenglin Y, Guang L, Jianming J (2003) Synthesis of a new-type carbonific and its application in intumescent flame-retardant (IFR)/polyurethane coatings. J Fire Sci 21(4):245–266

    Article  Google Scholar 

  6. Saunders JH, Frisch KC (1964) Polyurethanes: Chemistry and Technology, Part II. Technology Interscience Publishers, New York

    Google Scholar 

  7. Urbanski J, Czerwinski W, Janicka K, Majewska F, Zowall H (1977) Handbook of analysis of synthetic polymers and plastics, UK

    Google Scholar 

  8. Durganala S (2011) Synthesis of non-halogenated flame retardants for polyurethane foams. Doctoral dissertation, University of Dayton

    Google Scholar 

  9. Pervin F, Zhou Y, Rangari VK, Jeelani S (2005) Testing and evaluation on the thermal and mechanical properties of carbon nano fiber reinforced SC-15 epoxy. Mater Sci Eng, A 405(1–2):246–253

    Article  Google Scholar 

  10. Thabet A, Mubarak YA, Bakry M (2011) A review of nano-fillers effects on industrial polymers and their characteristics. J Eng Sci 39(2):377–403

    Google Scholar 

  11. Peng L, Zhou L, Li Y, Pan F, Zhang S (2011) Synthesis and properties of waterborne polyurethane/attapulgite nanocomposites. Compos Sci Technol 71:1280–1285

    Article  CAS  Google Scholar 

  12. Friedrich K, Fakirov S, Zhang Z (eds) (2005) Polymer composites: from nano-to macro-scale. Springer Science & Business Media

    Google Scholar 

  13. Pan H, Chen D (2007) Preparation and characterization of waterborne polyurethane/attapulgite nanocomposites. Eur Polym J 43:3766–3772

    Article  CAS  Google Scholar 

  14. Chang CW, Lu KT (2012) Natural castor oil based 2-package waterborne polyurethane wood coatings. Prog Org Coat 75(4):435–443

    Article  CAS  Google Scholar 

  15. Silva BB, Santana RM, Forte MM (2010) A solventless castor oil-based PU adhesive for wood and foam substrates. Int J Adhes Adhes 30(7):559–565

    Article  CAS  Google Scholar 

  16. Xia Y, Larock RC (2010) Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem 12(11):1893–1909

    Article  CAS  Google Scholar 

  17. Güner FS, Yağcı Y, Erciyes AT (2006) Polymers from triglyceride oils. Prog Polym Sci 31(7):633–670

    Article  Google Scholar 

  18. Ronda JC, Lligadas G, Galià M, Cádiz V (2011) Vegetable oils as platform chemicals for polymer synthesis. Eur J Lipid Sci Technol 113(1):46–58

    Article  CAS  Google Scholar 

  19. Rybak A, Fokou PA, Meier MA (2008) Metathesis as a versatile tool in oleochemistry. Eur J Lipid Sci Technol 110(9):797–804

    Article  CAS  Google Scholar 

  20. Henna PH, Larock RC (2007) Rubbery thermosets by ring-opening metathesis polymerization of a functionalized castor oil and cyclooctene. Macromol Mater Eng 292(12):1201–1209

    Article  CAS  Google Scholar 

  21. Liu K, Chapman (1997) Hall Press, New York

    Google Scholar 

  22. Sharmin E, Zafar F (2012) Polyurethane: an introduction. INTECH publisher, Croatia

    Google Scholar 

  23. Randall D, Lee S (2003) The polyurethanes book. Wiley publishers, New York

    Google Scholar 

  24. Szychers M, Szychers (2013) Handbook of polyurethanes. CRC Press Taylor and Francis, Florida

    Google Scholar 

  25. Bagdi K (2010) Role of interactions on the structure and properties of segmented polyurethane elastomers

    Google Scholar 

  26. Naheed S, Paridah Md, Mohammad J (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6:2247–2273

    Article  Google Scholar 

  27. Fink JK (2017) Reactive polymers: fundamentals and applications: a concise guide to industrial polymers. William Andrew

    Google Scholar 

  28. Hojabri L, Kong X, Narine SS (2010) Functional thermoplastics from linear diols and diisocyanates produced entirely from renewable lipid sources. Biomacromol 11(4):911–918

    Article  CAS  Google Scholar 

  29. Hojabri L, Kong X, Narine SS (2010) Novel long chain unsaturated diisocyanate from fatty acid: synthesis, characterization, and application in bio-based polyurethane. J Polym Sci, Part A: Polym Chem 48(15):3302–3310

    Article  CAS  Google Scholar 

  30. Wool RP (2014) U.S. Patent No. 8,633,257. U.S. Patent and Trademark Office, Washington, D.C

    Google Scholar 

  31. Kyle DR (1993) U.S. Patent No. 5,234,970. U.S. Patent and Trademark Office, Washington, D.C

    Google Scholar 

  32. Sahoo S, Kalita H, Mohanty S, Nayak SK (2016) Synthesis of vegetable oil-based polyurethane: a study on curing kinetics behavior. Int J Chem Kinet 48(10):622–634

    Article  CAS  Google Scholar 

  33. Das S, Pandey P, Mohanty S, Nayak SK (2015) Influence of NCO/OH and transesterified castor oil on the structure and properties of polyurethane: synthesis and characterization. Mater Express 5(5):377–389

    Article  Google Scholar 

  34. Kaushik A, Singh P (2005) Synthesis and characterization of castor oil/trimethylol propane polyol as raw materials for polyurethanes using time-of-flight mass spectroscopy. Int J Polym Anal Charact 10(5–6):373–386

    Article  CAS  Google Scholar 

  35. Mutlu H, Meier MA (2010) Castor oil as a renewable resource for the chemical industry. Eur J Lipid Sci Technol 112(1):10–30

    Article  CAS  Google Scholar 

  36. Petrović ZS (2008) Polyurethanes from vegetable oils. Polym Rev 48(1):109–155

    Article  Google Scholar 

  37. Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): a review. Ind Crops Prod 28(1):1–10

    Google Scholar 

  38. Segura-Campos MR, Betancur-Ancona D (2016) The promising future of jatropha curcas: properties and potential applications. Nova Science Publishers Incorporated, Hauppauge, NY, USA

    Google Scholar 

  39. Abdulla R, Chan ES, Ravindra P (2011) Biodiesel production from jatropha curcas: a critical review. Crit Rev Biotechnol 31(1):53–64

    Article  CAS  Google Scholar 

  40. Chen CR, Cheng YJ, Ching YC, Hsiang D, Chang CMJ (2012) Green production of energetic jatropha oil from de-shelled jatropha curcas L. seeds using supercritical carbon dioxide extraction. J Supercrit Fluids 66(1):137–143

    Google Scholar 

  41. Hazmi ASA, Aung MM, Abdullah LC, Salleh MZ, Mahmood MH (2013) Producing jatropha oil-based polyol via epoxidation and ring opening. Ind Crops Prod 50:563–567

    Article  CAS  Google Scholar 

  42. Lestari D, Mulder WJ, Sanders JP (2011) Jatropha seed protein functional properties for technical applications. Biochem Eng J 53(3):297–304

    Article  CAS  Google Scholar 

  43. Pawlik H, Prociak A (2012) Influence of palm oil-based polyol on the properties of flexible polyurethane foams. J Polym Environ 20(2):438–445

    Article  CAS  Google Scholar 

  44. Pillai PK, Li S, Bouzidi L, Narine SS (2016) Solvent-free synthesis of polyols from 1-butene metathesized palm oil for use in polyurethane foams. J Appl Polym Sci 133(23):1–13

    Article  Google Scholar 

  45. Pillai PK, Li S, Bouzidi L, Narine SS (2016) Metathesized palm oil: fractionation strategies for improving functional properties of lipid-based polyols and derived polyurethane foams. Ind Crops Prod 84:273–283

    Article  CAS  Google Scholar 

  46. Saalah S, Abdullah LC, Aung MM, Salleh MZ, Biak DRA, Basri M, Jusoh ER (2015) Waterborne polyurethane dispersions synthesized from jatropha oil. Ind Crops Prod 64:194–200

    Article  CAS  Google Scholar 

  47. Aung MM, Yaakob Z, Kamarudin S, Abdullah LC (2014) Synthesis and characterization of Jatropha (Jatropha curcas L.) oil based polyurethane wood adhesive. Ind Crops Prod 60:177–185

    Article  CAS  Google Scholar 

  48. Gogoi P, Boruah R, Dolui SK (2015) Jatropha curcas oil based alkyd/epoxy/graphene oxide (GO) bionanocomposites: effect of GO on curing, mechanical and thermal properties. Prog Org Coat 84:128–135

    Article  CAS  Google Scholar 

  49. Zhang L, Zhang H, Guo J (2012) Synthesis and properties of UV curable polyester-based waterborne polyurethane/functionalized silica composites and morphology of their nanostructured films. Ind Eng Chem Res 51(25):8434–8441

    Article  CAS  Google Scholar 

  50. Hsiao S, Ma CM, Tien H, Liao W-H, Yu-Sheng Wang, Shin-Ming Li, Sheng-Chi Yang Chih-Yu Lin, Ruey-Bin Yang (2015) Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite. ACS Appl Mater Interfaces 7(4):2817–2826

    Article  CAS  Google Scholar 

  51. Wang C, Xu F, He M, Ding L, Li S, Wei J (2018) Castor oil-based polyurethane/silica nanocomposites: morphology, thermal and mechanical properties. Polym Comp. https://doi.org/10.1002/pc.24798

  52. Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068–1133

    Article  CAS  Google Scholar 

  53. Meera KMS, Sankar RM, Paul J, Jaisankara SN, Mandal AB (2014) The influence of applied silica nanoparticles on a bio-renewable castor oil based polyurethane nanocomposite and its physicochemical properties. Phys Chem Chem Phys 16(20):9276–9288

    Article  Google Scholar 

  54. Liu D, Tian H, Zhang L, Chang PR (2008) Structure and properties of blended films prepared from castor oil-based polyurethane/soy protein derivative. Ind Eng Chem Res 47(23):9330–9336

    Article  CAS  Google Scholar 

  55. Gu H, Guo J, He Q, Tadakamalla S, Zhang X, Yan X, Huang Y, Colorado HA, Wei S Guo Z (2013) Flame-retardant epoxy resin nanocomposites reinforced with polyaniline-stabilized silica nanoparticles. Ind Eng Chem Res 52(23):7718–7728

    Google Scholar 

  56. Das S, Pandey P, Mohanty S, Nayak SK (2017) Evaluation of biodegradability of green polyurethane/nanosilica composite synthesized from transesterified castor oil and palm oil based isocyanate. Int Biodet Biodeg 117(1):278–288

    Article  CAS  Google Scholar 

  57. Filip Z, Hermann S, Demnerov (2008) FT-IR spectroscopic characteristics of differently cultivated Escherichia coli. Czech J Food Sci 26(6):458–463

    Google Scholar 

  58. Fukushima K, Abbate C, Tabuani D, Gennari M, Rizzarelli P, Camino G (2010) Biodegradation trend of poly(e-caprolactone) and nanocomposites. Mat Sci Eng C 30(4):566–574

    Article  CAS  Google Scholar 

  59. Kim YD, Kim SC (1998) Effect of chemical structure on the biodegradation of polyurethanes under composting conditions 62:343–352

    CAS  Google Scholar 

  60. Das S, Pandey P, Mohanty S, Nayak SK (2016) Effect of nanosilica on the physicochemical, morphological and curing characteristics of transesterified castor oil based polyurethane coatings. Prog Org Coat 97:233–243

    Article  CAS  Google Scholar 

  61. Thakur S, Karak N (2013) Bio-based tough hyperbranched polyurethane–graphene oxide nanocomposites as advanced shape memory materials. RSC Adv. 3(24):9476–9482

    Article  CAS  Google Scholar 

  62. Zhang J, Zhang C, Madbouly SA (2015) In situ polymerization of bio-based thermosetting polyurethane/graphene oxide nanocomposites. J Appl Polym Sci 132(13):1–8

    CAS  Google Scholar 

  63. Ali A, Yusoh K, Hasany SF (2014) Synthesis and physicochemical behaviour of polyurethane-multiwalled carbon nanotubes nanocomposites based on renewable castor oil polyols. J. Nanomater 2014, Article ID 564384, 9 pages

    Google Scholar 

  64. Chen S, Wang Q, Wang T (2012) Damping, thermal, and mechanical properties of carbon nanotubes modified castor oil-based polyurethane/epoxy interpenetrating polymer network composites. Mater Des 38:47–52

    Article  Google Scholar 

  65. Liao L, Li X, Wang Y, Fu H, Li Y (2016) Effects of surface structure and morphology of nanoclays on the properties of jatropha curcas oil-based waterborne polyurethane/clay nanocomposites. Ind Eng Chem Res 55(45):11689–11699

    Article  CAS  Google Scholar 

  66. Dzulkifli MH, Yahya MY, Majid RA (2017) Rigid palm oil-based polyurethane foam reinforced with diamine-modified montmorillonite nanoclay. Mater Sci Eng 204. https://doi.org/10.1088/1757-899x/204/1/012024

  67. Adnan S, Maznee TN, Ismail T, Mohd NN, Mariam ND, Nik S, Hanzah NA, Kian YS, Hazimah AH (2016) Development of flexible polyurethane nanostructured biocomposite foams derived from palm olein-based polyol. Adv Mater Sci Eng 2016, Article ID 4316424, 12 pages

    Google Scholar 

  68. Nikolaidis AK, Achilias DS, Karayannidis GP (2012) Effect of the type of organic modifier on the polymerization kinetics and the properties of poly(methyl methacrylate)/organomodified montmorillonite nanocomposites. Eur Polym J 48(2):240–251

    Article  CAS  Google Scholar 

  69. Zaimahwati AH, Rihayat T, Reflianto D, Gea S (2014–2015) The manufacture of palm oil-based polyurethane nanocomposite with organic montmorillonite nanoparticle as paint coatings. Int J Chem Tech Res 7(5):2537–2544

    Google Scholar 

  70. Salih AM, Ahmad MB, Ibrahim NA, Mohd Dahlan KZH, Tajau R, Mahmood MH, Wan MdZWY (2014) Thermal and mechanical properties of palm oil-based polyurethane acrylate/clay nanocomposites prepared by in-situ intercalative method and electron beam radiation. AIP Conf Proc 117:1584

    Google Scholar 

  71. Xia Y, Larock RC (2011) Preparation and properties of aqueous castor oil-based polyurethane-silica nanocomposite dispersions through a sol-gel process. Macromol Rapid Commun 32(17):1331–1337

    Article  CAS  Google Scholar 

  72. Deka H, Niranjan K (2011) Bio-based hyperbranched polyurethane/clay nanocomposites: adhesive, mechanical, and thermal properties. Polym Adv Technol 22(6):973–980

    Article  CAS  Google Scholar 

  73. Sahoo S, Kalita H, Mohanty S, Nayak SK (2018) Shear strength and morphological study of polyurethane-OMMT clay nanocomposite adhesive derived from vegetable oil-based constituents. J Renew Mater 6(1):117–125

    Article  CAS  Google Scholar 

  74. Das B, Mandal M, Upadhyay A, Chattopadhyay P, Karak N (2013) Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: smart antibacterial biomaterials for biomedical devices and implants. Biomed Mater 8(3):1–12

    Article  Google Scholar 

  75. Mohammed RS, Manawwer A, Naser MA (2015) Development of castor oil based poly(urethane-esteramide)/TiO2 nanocomposites as anticorrosive and antimicrobial coatings. J Nanomater 2015, Article ID 745217, 10 pages. http://dx.doi.org/10.1155/2015/745217

  76. Hajipour MJ, Fromm KM, Akbar Ashkarran A (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511

    Article  CAS  Google Scholar 

  77. Thakur S, Karak N (2014) Multi-stimuli responsive smart elastomeric hyperbranched polyurethane/reduced graphene oxide nanocomposites. Mater Chem A 2:14867–14875

    Article  CAS  Google Scholar 

  78. Ahuja D, Kaushik A (2016) Castor oil-based polyurethane nanocomposites reinforced with organically modified clay: synthesis and characterization. J Elastomers Plast 49(4):1–17

    Google Scholar 

  79. Peng Gao Z, Jun Zhong T, Sun J, Wang X, Yue C (2012) Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohyd Polym 87(3):2068–2075

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonalee Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S., Kumar, S., Mohanty, S., Nayak, S.K. (2019). Synthesis, Characterization and Application of Bio-based Polyurethane Nanocomposites. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_39

Download citation

Publish with us

Policies and ethics