Skip to main content

An Overview on Plant Fiber Technology: An Interdisciplinary Approach

Abstract

Researches on plant fibers for composite applications are increasing due to the demand of materials from renewable sources, which do not consume fossil fuels during manufacture, thus avoiding greenhouse gas emissions. An interdisciplinary approach is required to cover all aspects of plant fiber research, but the actual literature shows many gaps in this sense, where many works are limited in one field of study and may present unclear conclusions. To solve this problem, we did a systematic approach in the literature to provide a review of key aspects of plant fibers, regarding biology, chemistry, and engineering.

Keywords

  • Lignocellulosic fibers
  • Cell wall chemistry
  • Surface modification
  • Composite materials
  • Interdisciplinary approach

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-05399-4_34
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-05399-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Adapted from Varki et al. [60]

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Notes

  1. 1.

    Relation between amorphous and crystalline regions, which can be calculated from x-ray diffraction analysis, most commonly by Segal’s Method [52].

Abbreviations

CML:

Compound middle lamella

DP:

Degree of polymerization

G:

Guaiacyl (G)

GAX:

Glucuronoarabinoxylans

H:

p-hydroxyphenyl

HG:

Homogalacturonan

L:

Lumen

MET:

Transmission electron microscopy

MFA:

Microfibrillar angle

ML:

Middle lamella

OH:

Hydroxyl groups

P:

Primary wall

RG-I:

Rhamnogalacturonan I

RG-II:

Rhamnogalacturonan II

RTM:

Resin transfer molding

S:

Syringyl

S1:

Secondary wall 1

S2:

Secondary wall 2

S3:

Secondary wall 3

SMC:

Sheet molding compound

References

  1. Akin DE, Eder M, Burgert I, Müssig J, Slootmaker T. (2010) What are natural fibres? In: Müssig J (ed) Industrial applications of natural fibres. Wiley, Chichester, UK, pp 11–48. https://doi.org/10.1002/9780470660324.ch2

  2. Anandjiwala RD, John M (2010) Sisal—cultivation, processing and products. In: Industrial applications of natural fibres. Wiley, Chichester, pp 181–95. https://doi.org/10.1002/9780470660324.ch8

  3. Atmodjo MA, Hao Z, Mohnen D (2013) Evolving views of pectin biosynthesis. Annu Rev Plant Biol 64:747–79. https://doi.org/10.1146/annurev-arplant-042811-105534

  4. Baley C, Busnel F, Grohens Y, Sire O (2006) Influence of chemical treatments on surface properties and adhesion of flax fibre-polyester resin. Compos Part A Appl Sci Manuf 37:1626–1637. https://doi.org/10.1016/j.compositesa.2005.10.014

    CAS  CrossRef  Google Scholar 

  5. Beakou A, Charlet K (2013) Mechanical properties of interfaces within a flax bundle—part II: numerical analysis. Int J Adhes Adhes 43:54–59. https://doi.org/10.1016/j.ijadhadh.2013.01.013

    CAS  CrossRef  Google Scholar 

  6. Biagiotti J, Puglia D, Kenny JM (2004) A Review on natural fibre-based composites-part I: structure. Proc Prop Vegetable Fibres J Nat Fibers 1(2):37–41. https://doi.org/10.1300/j395v01n02

  7. Bidlack J, Malone M, Benson R (1992) Molecular structure and components integration of secondary cell walls in plants. ProcOklaAcadSci 75:51–56

    Google Scholar 

  8. Booker RE, Sell J (1998) The nanostructure of the cell wall of softwoods and its functions in a living tree. Eur J Wood Wood Prod 56:1–8. https://doi.org/10.1007/s001070050255

    CrossRef  Google Scholar 

  9. Bourmaud A, Morvan C, Bouali A, Placet V, Perré P, Baley C (2013) Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers. Ind Crops Prod 44:343–351. https://doi.org/10.1016/j.indcrop.2012.11.031

    CAS  CrossRef  Google Scholar 

  10. Burgert I, Dunlop JWC (2011) Micromechanics of cell walls. In: Wojtaszek P (ed) Mechanical integration of plant cells and plants, vol 9, 1st edn. Springer, Berlin Heidelberg, pp 27–52. https://doi.org/10.1007/978-3-642-19091-9

  11. Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900. https://doi.org/10.1016/j.carres.2009.05.021

    CAS  CrossRef  Google Scholar 

  12. Charlet K, Béakou A (2011) Mechanical properties of interfaces within a flax bundle—part I: experimental analysis. Int J Adhes Adhes 31:875–881. https://doi.org/10.1016/j.ijadhadh.2011.08.008

    CAS  CrossRef  Google Scholar 

  13. Dalimova GN, Abduazimov KA (1994) Lignins of herbaceous plants. Chem Nat Compd 30:146–159. https://doi.org/10.1007/BF00629995

    CrossRef  Google Scholar 

  14. Donaldson LA (2001) Lignification and lignin topochemistry—an ultrastructural view. Phytochemistry 57:859–73. https://doi.org/10.1016/s0031-9422(01)00049-8

  15. Drakakaki G (2015) Polysaccharide deposition during cytokinesis: challenges and future perspectives. Plant Sci 236:177–184. https://doi.org/10.1016/j.plantsci.2015.03.018

    CAS  CrossRef  Google Scholar 

  16. Drieling A, Müssig J, Graupner N, Müssig J, Piotrowski S, Carus M (2010) Economic aspects. In: Müssig J (ed) Industrial applications of natural fibres. Wiley, Chichester, UK, pp 49–86. https://doi.org/10.1002/9780470660324.ch3

  17. Duval A, Lawoko M (2014) A review on lignin-based polymeric, micro- and nano-structured materials. React Funct Polym 85:78–96. https://doi.org/10.1016/j.reactfunctpolym.2014.09.017

    CAS  CrossRef  Google Scholar 

  18. Ebringerova A, Hromadkova Z, Heinze T (2005) Hemicellulose. Adv Polym Sci 186:1–67. https://doi.org/10.1007/b136816

    CAS  CrossRef  Google Scholar 

  19. El-Gohary M (2012) The contrivance of new mud bricks for restoring and preserving the Edfa ancient granary–Sohag, Egypt. Int J Conserv Sci 3:67–78

    Google Scholar 

  20. Evert RF (2006) Esau’s plant anatomy. https://doi.org/10.1002/0470047380

  21. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

    CAS  CrossRef  Google Scholar 

  22. Friedrich K, Evstatiev M, Angelov I, Mennig G (2007) Pultrusion of flax-polypropylene composite profiles. In: Handbook of engineering biopolymers. Carl Hanser Verlag GmbH & Co. KG, München, pp 223–36. https://doi.org/10.3139/9783446442504.007

  23. Gandini A, Belgacem MN, Barkoula N-M, Peijs T, Dufresne A, Mosiewicki MA et al (2011) Interface engineering of natural fibre composites for maximum performance, 1st edn. Woodhead Publishing, Cambridge

    Google Scholar 

  24. George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41:1471–1485. https://doi.org/10.1002/pen.10846

    CAS  CrossRef  Google Scholar 

  25. Grabber JH, Ralph J, Lapierre C, Barrière Y (2004) Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall matrix interactions. Comptes Rendus Biol 327:455–65. https://doi.org/10.1016/j.crvi.2004.02.009

  26. Haigler CH (1985) The functions and biogenesis of native cellulose. In: Nevell T, Zeronian S (ed) Cellulose chemistry and its applications. Ellis Horwood Ltd., Chichester, UK, pp 30–83

    Google Scholar 

  27. Hänninen T, Hughes M, Baur E, Otremba F, Huber T, Graupner N, et al (2010) Composites. Industrial applications of natural fibres. Wiley, Chichester, UK, pp 381–480. https://doi.org/10.1002/9780470660324.ch19

  28. Hill CAS (2006) Wood modification: chemical, thermal and other processes. Wiley, Chichester, UK. https://doi.org/10.1002/0470021748

  29. Jarvis MC (2000) Interconversion of the Iα and Iβ crystalline forms of cellulose by bending. Carbohydr Res 325:150–154. https://doi.org/10.1016/S0008-6215(99)00316-X

    CAS  CrossRef  Google Scholar 

  30. John M, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207. https://doi.org/10.1002/pc.20461

    CAS  CrossRef  Google Scholar 

  31. Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A Appl Sci Manuf 35:371–376. https://doi.org/10.1016/j.compositesa.2003.09.016

    CAS  CrossRef  Google Scholar 

  32. Kabir MM, Wang H, Aravinthan T, Cardona F, Lau K (2007) Effects of natural fibre surface on composite properties : a review. In: eddBE2011 1st international postgraduate conference engineering design and development built environment sustain, vol 27–29. Wellbeing, pp 94–99

    Google Scholar 

  33. Koch G, Schmitt U (2013) Topochemical and electron microscopic analyses on the lignification of individual cell wall layers during wood formation and secondary changes. Plant Cell Monogr 20:41–69. https://doi.org/10.1007/978-3-642-36491-4_2

    CAS  CrossRef  Google Scholar 

  34. Kvavadze E, Bar-Yosef O, Belfer-Cohen A, Boaretto E, Jakeli N, Matskevich Z et al (2009) 30,000-year-old wild flax fibers. Science 325:1359. https://doi.org/10.1126/science.1175404

    CAS  CrossRef  Google Scholar 

  35. Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290. https://doi.org/10.1016/j.progpolymsci.2013.11.004

    CAS  CrossRef  Google Scholar 

  36. Lewis NG (1990) Lignin : occurrence, biogenesis and biodegradation

    Google Scholar 

  37. Li X, Tabil L, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33. https://doi.org/10.1007/s10924-006-0042-3

    CAS  CrossRef  Google Scholar 

  38. Liu M, Fernando D, Daniel G, Madsen B, Meyer AS, Ale MT et al (2015) Effect of harvest time and field retting duration on the chemical composition, morphology and mechanical properties of hemp fibers. Ind Crops Prod 69:29–39. https://doi.org/10.1016/j.indcrop.2015.02.010

    CAS  CrossRef  Google Scholar 

  39. Martin N, Mouret N, Davies P, Baley C (2013) Influence of the degree of retting of flax fibers on the tensile properties of single fibers and short fiber/polypropylene composites. Ind Crops Prod 49:755–767. https://doi.org/10.1016/j.indcrop.2013.06.012

    CAS  CrossRef  Google Scholar 

  40. McDougall GJ, Morrison IM, Stewart D, Weyers JDB, Hillman JR (1993) Plant fibers—botany, chemistry and processing for industrial use. J Sci Food Agric 62:1–20. https://doi.org/10.1002/jsfa.2740620102

    CAS  CrossRef  Google Scholar 

  41. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277. https://doi.org/10.1016/j.pbi.2008.03.006

    CAS  CrossRef  Google Scholar 

  42. Müssig J, Haag K (2014) The use of flax fibres as reinforcements in composites. In: Biofiber reinforcements in composite materials

    Google Scholar 

  43. Mwaikambo LY (2006) Review of the history, properties and application of plant fibres. African J Sci Technol 7:120–133

    Google Scholar 

  44. Mwaikambo LY, Tucker N, Clark AJ (2007) Mechanical properties of hemp-fibre-reinforced euphorbia composites. Macromol Mater Eng 292:993–1000. https://doi.org/10.1002/mame.200700092

    CAS  CrossRef  Google Scholar 

  45. Niklas KJ (1992) Plant Biomechanics: an engineering approach to plant form and function. The University of Chicago Press, Chicago and London

    Google Scholar 

  46. O’Neill MA, Ishii T, Albersheim P, Darvill AG (2004) Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol 55:109–39. https://doi.org/10.1146/annurev.arplant.55.031903.141750

  47. Pauly M, Gille S, Liu L, Mansoori N, de Souza A, Schultink A et al (2013) Hemicellulose biosynthesis. Planta 238:627–642. https://doi.org/10.1007/s00425-013-1921-1

    CAS  CrossRef  Google Scholar 

  48. Rowell R (2005) Handbook of wood chemistry and wood composites

    Google Scholar 

  49. Rowell RM (2008) Natural fibres: types and properties. In: Properties and performance of natural-fibre composites. Elsevier, pp 3–66. https://doi.org/10.1533/9781845694593.1.3

  50. Salmén L, Bergström E (2009) Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR. Cellulose 16:975–982. https://doi.org/10.1007/s10570-009-9331-z

    CAS  CrossRef  Google Scholar 

  51. Salmén L, Burgert I (2009) Cell wall features with regard to mechanical performance. A review. Holzforschung 63:121–129. https://doi.org/10.1515/HF.2009.011

    CAS  CrossRef  Google Scholar 

  52. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    CAS  CrossRef  Google Scholar 

  53. Ben SAEO, Chaabouni Y, Msahli S, Sakli F (2012) Morphological and crystalline characterization of NaOH and NaOCl treated Agave americana L. fiber. Ind Crops Prod 36:257–66. https://doi.org/10.1016/j.indcrop.2011.09.012

  54. Singh SR, Kundu DK, Tripathi MK, Dey P, Saha AR, Kumar M et al (2015) Impact of balanced fertilization on nutrient acquisition, fibre yield of jute and soil quality in new gangetic alluvial soils of India. Appl Soil Ecol 92:24–34. https://doi.org/10.1016/j.apsoil.2015.03.007

    CrossRef  Google Scholar 

  55. Skoglund G, Nockert M, Holst B (2013) Viking and early middle ages northern Scandinavian textiles proven to be made with hemp. Sci Rep 3:2686. https://doi.org/10.1038/srep02686

    CAS  CrossRef  Google Scholar 

  56. Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78. https://doi.org/10.1146/annurev.cellbio.22.022206.160206

    CAS  CrossRef  Google Scholar 

  57. Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19:256–271. https://doi.org/10.1080/1023666X.2014.880016

    CAS  CrossRef  Google Scholar 

  58. Thompson JE, Fry SC (2000) Evidence for covalent linkage between xyloglucan and acidic pectins in suspension-cultured rose cells. Planta 211:275–286. https://doi.org/10.1007/s004250000287

    CAS  CrossRef  Google Scholar 

  59. Unger F (1866) Botanische Streifzüge auf dem Gebiete der Culturgeschichte—Ein Ziegel der Dashurpyramide in Ägypten nach seinem Inhalte an organischen Einschlüssen. Sitzungsberichte der Kais. Akad. der Wissenschaften Wien Math. Klasse 54:33–62

    Google Scholar 

  60. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Marth JD et al (2009) Symbol nomenclature for glycan representation. Proteomics 9:5398–5399. https://doi.org/10.1002/pmic.200900708

    CAS  CrossRef  Google Scholar 

  61. Viëtor RJ, Mazeau K, Lakin M, Pérez S (2000) A priori crystal structure prediction of native celluloses. Biopolymers 54:342–354. https://doi.org/10.1002/1097-0282(20001015)54:5%3c342:AID-BIP50%3e3.0.CO;2-O

    CrossRef  Google Scholar 

  62. Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11:301–307. https://doi.org/10.1016/j.pbi.2008.03.002

    CAS  CrossRef  Google Scholar 

  63. Van de Weyenberg I, Ivens J, De Coster A, Kino B, Baetens E, Verpoest I (2003) Influence of processing and chemical treatment of flax fibres on their composites. Compos Sci Technol 63:1241–1246. https://doi.org/10.1016/s0266-3538(03)00093-9

  64. Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl Sci Manuf 41:806–19. https://doi.org/10.1016/j.compositesa.2010.03.005

  65. Yu H, Yu C (2007) Study on microbe retting of kenaf fiber. Enzyme Microb Technol 40:1806–1809. https://doi.org/10.1016/j.enzmictec.2007.02.018

    CAS  CrossRef  Google Scholar 

  66. Zah R, Hischier R, Leão AL, Braun I (2007) Curauá fibers in the automobile industry—a sustainability assessment. J Clean Prod 15:1032–40. https://doi.org/10.1016/j.jclepro.2006.05.036

Download references

Acknowledgements

The authors wish to thank the CNPq, Capes and FAP-DF for financial assistance during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Maria da Luz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

da Silva, A.M.B., da Luz, S.M., Siva, I., Jappes, J.T.W., Amico, S.C. (2019). An Overview on Plant Fiber Technology: An Interdisciplinary Approach. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_34

Download citation