Skip to main content

Sustainable Nanocomposites in Food Packaging

Abstract

Plastics have been used extensively and exploited its usages in various applications such as packaging materials, automotive parts, tubes, pipes, and many more. The plastics have attracted many fields for its versatility, lightweight, and durability. Plastics are being used broadly as food packaging materials which come as bottle containers, food containers, and lightweight take-away food packets. However, as plastics are not degradable, they are causing a major environmental problem due to scarce of landfill sites. The plastics are also being washed into the sea and causing pollution in the ocean and being eaten by the fishes. Thus, there cause a need for developing biodegradable materials that have both mechanical strength and biodegradable. A lot of researchers are contributing to developing biodegradable materials that can substitute conventional polymers, however, there is still limit of mechanical strength and elongation-at-break as per need for food packaging. Therefore, the polymers/biodegradable polymers are being mixed with nano-sized fillers to form nanocomposites which have improved mechanical strength. In this chapter, preparations of nanocomposites are discussed thoroughly and the characterizations that are being used to study the properties of the nanocomposites are detailed in the sections below.

Keywords

  • Biodegradable
  • Biopolymer
  • Nanocomposite
  • Functional properties
  • And food packaging

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

APs:

Alkyl phenols

CNCs:

Cellulose nanocrystals

CNT:

Carbon nanotube

CNW:

Cellulose nanowhisker

CO2PC:

Carbon dioxide permeability coefficient

CO2TR:

Carbon dioxide transmission rate

DSC:

Differential scanning calorimetry

DMF:

N, N-dimethylformamide

EVOH:

Ethylene vinyl alcohol copolymer

HDPE:

High-density polyethylene

HPMC:

Hydroxyl propyl methyl cellulose

HT:

Hydroxytyrosol

HV:

Hydroxyl-valerate

LDPE:

Low-density polyethylene

MgO:

Magnesium oxide

MMT:

Montmorillonite

MWNT:

Multi-walled carbon nanotube

OPC:

Oxygen permeability coefficient

OTR:

Oxygen transmission rate

PANI:

Polyaniline

PCL:

Poly(e-caprolactone)

PEG:

Polyethylene glycol

PEGME:

Polyethylene glycol methyl ether

PET:

Polyethylene terephthalate

PHA:

Poly hydroxyalkanoate

PHB:

Polyhydroxy butyrate

PHBV:

Polyhydroxybutyrate-co-hydroxyvalerate

PLA:

Polylactic acid

PP:

Polypropylene

PVA:

Polyvinyl alcohol

ROP:

Ring-opening polymerization

SEM:

Scanning electron microscopy

TGA:

Thermogravimetric analysis

WHO:

World health organization

WSC:

Water-soluble chitosan

WVPC:

Water vapour permeability coefficient

WVTR:

Water vapour transmission rate

References

  1. Almeida LA, Marques MDFV, Dahmouche K (2015) Synthesis of polypropylene/organoclay nanocomposites via in situ polymerization with improved thermal and dynamic-mechanical properties. J Nanosci Nanotechnol 15(3):2514–2522

    CrossRef  CAS  Google Scholar 

  2. Arias A, Heuzey MC, Huneault MA et al (2015) Enhanced dispersion of cellulose nanocrystals in melt-processed polylactide-based nanocomposites. Cellulose 22(1):483–498

    CrossRef  CAS  Google Scholar 

  3. Arrieta MP, Fortunati E, Dominici F et al (2014) PLA-PHB/cellulose based films: mechanical, barrier and disintegration properties. Polym Degrad Stab 107:139–149

    CrossRef  CAS  Google Scholar 

  4. Arrieta MP, Lopez J, Ferrandiz S et al (2013) Characterization of PLA-limonene blends for food packaging applications. Polym Testing 32(4):760–768

    CrossRef  CAS  Google Scholar 

  5. Badmus AA, Gauri S, Ali NI et al (2015) Mechanical stability of biobased food packaging materials. Food Sci Q Manag 39:41–47

    Google Scholar 

  6. Beltrán A, Valente AJM, Jiménez A et al (2014) Characterization of poly(ε-caprolactone)-based nanocomposites containing hydroxytyrosol for active food packaging. J Agric Food Chem 62(10):2244–2252

    CrossRef  CAS  Google Scholar 

  7. Bhunia K, Sablani S, Tang J et al (2013) Migration of chemical compounds from packaging polymers during microwave, conventional heat treatment and storage. Compr Rev Food Sci Food Saf 12:523–545

    CrossRef  CAS  Google Scholar 

  8. Boone Lox F, Pottie S (1993) Deficiencies of polypropylene in its use as a food-packaging material—a review. Packag Technol Sci 6(June):277–281

    CrossRef  CAS  Google Scholar 

  9. Bordes P, Pollet E, Bourbigot S et al (2008) Structure and properties of PHA/clay nano-biocomposites prepared by melt intercalation. Macromol Chem Phys 209(14):1473–1484

    CrossRef  CAS  Google Scholar 

  10. Butnaru E, Cheaburu CN, Yilmaz O et al (2016) Poly(vinyl alcohol)/chitosan/montmorillonite nanocomposites for food packaging applications: influence of montmorillonite content. High Perform Polym 28(10):1124–1138

    CrossRef  CAS  Google Scholar 

  11. Choi RN, Cheigh CI, Lee SY et al (2011) Preparation and properties of polypropylene/clay nanocomposites for food packaging. J Food Sci 76(8):62–67

    CrossRef  CAS  Google Scholar 

  12. De Silva RT, Mantilaka MMMGPG, Ratnayake SP et al (2017) Nano-MgO reinforced chitosan nanocomposites for high performance packaging applications with improved mechanical, thermal and barrier properties. Carbohydr Polym 157:739–747

    CrossRef  CAS  Google Scholar 

  13. Deepa B, Abraham E, Cherian BM et al (2011) Structure, morphology and thermal characteristics of banana nanofibers obtained by steam explosion. Bioresour Technol 102(2): 1988–1997

    Google Scholar 

  14. Dehnad D, Mirzaei H, Emam-Djomeh Z et al (2014) Thermal and antimicrobial properties of chitosan-nanocellulose films for extending shelf life of ground meat. Carbohydr Polym 109:148–154

    CrossRef  CAS  Google Scholar 

  15. Diez-Pascual AM, Diez-Vicente, Angel L (2014) ZnO-reinforced poly (3-hydroxybutyrate- co -3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging. Appl Mater Interf 9822–9834

    Google Scholar 

  16. Feldman D (2016) Review-polymer nanocomposites in medicine. J Macromol Sci, Part A: Pure and Appl Chem 53(1):55–62

    CrossRef  CAS  Google Scholar 

  17. Fonseca C, Ochoa A, Ulloa MT et al (2015) Poly (lactic acid)/TiO2 nanocomposites as alternative biocidal and antifungal materials. Mater Sci Eng 57:314–320

    CrossRef  CAS  Google Scholar 

  18. Fortunati E, Puglia D, Monti M et al (2012) Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. J Appl Polym Sci 128(5):3220–3230

    Google Scholar 

  19. Fortunati E, Rinaldi S, Peltzer M et al (2014) Nano-biocomposite films with modified cellulose nanocrystals and synthesized silver nanoparticles. Carbohydr Polym 101:1122–1133

    CrossRef  CAS  Google Scholar 

  20. Galotto M, Ulloa P (2010) Effect of high-pressure food processing on the mass transfer properties of selected packaging materials. Packag Technol Sci 23(May):253–266

    CAS  Google Scholar 

  21. Ghaffari-Moghaddam M, Eslahi H (2014) Synthesis, characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag. Arab J Chem 7(5):846–855

    CrossRef  CAS  Google Scholar 

  22. Herrera N, Mathew AP, Oksman K (2015) Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos Sci Technol 106:149–155

    CrossRef  CAS  Google Scholar 

  23. Heydari A, Alemzadeh I, Vossoughi M (2013) Functional properties of biodegradable corn starch nanocomposites for food packaging applications. Mater Des 50:954–961

    CrossRef  CAS  Google Scholar 

  24. Honarvar Z, Hadian Z, Mashayekh M (2016) Nanocomposites in food packaging applications and their risk assessment for health. Electr Phys 8(6):2531–2538

    CrossRef  Google Scholar 

  25. Hu W, Chen S, Yang J et al (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym 101(1):1043–1060

    CrossRef  CAS  Google Scholar 

  26. Icoz A, Eker B (2016) Selection of food packaging material, migration and its effects on food quality. In: 1st international conference on quality of life, Center for Quality, Faculty of Engineering, Unviersity of Kragujevac, June 2016

    Google Scholar 

  27. Jiang L, Morelius E, Zhang J et al (2008) Study of the Poly(3-hyroxybutyrate-co-3-hydroxyvalerate)/Cellulose Nanowhisker composites prepared by solution casting and melt processing. J Compos Mater 42(24):2629–2645

    CrossRef  CAS  Google Scholar 

  28. Kim IH, Jeong YG (2010) Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J Polym Sci, Part B: Polym Phys 48(8):850–858

    CrossRef  CAS  Google Scholar 

  29. Kim SW, Cha SH (2014) Thermal, mechanical, and gas barrier properties of ethylene–vinyl alcohol copolymer-based nanocomposites for food packaging films: Effects of nanoclay loading. J Appl Polym Sci 131(11):40289

    CrossRef  CAS  Google Scholar 

  30. Kong I, Tshai KY, Hoque ME (2015) Manufacturing of natural fibre-reinforced polymer composites by solvent casting method. In: Salit MS (ed) Manufacturing of natural fibre reinforced polymer composites. Springer International Publishing, Switzerland, pp 331–349

    CrossRef  Google Scholar 

  31. Lagarón JM, López-Rubio A, José Fabra M (2015) Bio-based packaging. J Appl Polym Sci 133(2):42971

    Google Scholar 

  32. Lai SM, Hsieh YT (2016) Preparation and properties of polylactic acid (PLA)/silica nanocomposites. J Macromol Sci, Part B 55(3):211–228

    CrossRef  CAS  Google Scholar 

  33. Lai SM, Wu SH, Lin GG et al (2014) Unusual mechanical properties of melt-blended poly (lactic acid)(PLA)/clay nanocomposites. Eur Polym J 52:193–206

    CrossRef  CAS  Google Scholar 

  34. Lee JW, Son SM, Hong SI (2008) Characterization of protein-coated polypropylene films as a novel composite structure for active food packaging application. J Food Eng 86(4):484–493

    CrossRef  CAS  Google Scholar 

  35. Lemmouchi Y, Murariu M, Santos DAM et al (2009) Plasticization of poly(lactide) with blends of tributyl citrate and low molecular weight poly(D, L-lactide)-B-poly(ethylene glycol) copolymers. Eur Polym J 45(10):2839–2848

    CrossRef  CAS  Google Scholar 

  36. Li X, Gao H, Scrivens WA et al (2005) Structural and mechanical characterization of nanoclay-reinforced agarose nanocomposites. Nanotechnology 16(10):2020–2029

    CrossRef  CAS  Google Scholar 

  37. Liu G, Song Y, Wang J et al (2014) Effects of nanoclay type on the physical and antimicrobial properties of PVOH-based nanocomposite films. LWT-Food Sci Technol 57(2):562–568

    CrossRef  CAS  Google Scholar 

  38. Lunineau G, Rahaman A (2012) A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-basednanoreinforcements. Carbon 50:2377–2395

    CrossRef  CAS  Google Scholar 

  39. Maiti P, Batt CA, Giannelis EP (2007) New biodegradable polyhydroxybutyrate/layered silicate nanocomposites. Biomacromol 8(11):3393–3400

    CrossRef  CAS  Google Scholar 

  40. Majeed K, Jawaid M, Hassan A et al (2013) Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Des 46:341–410

    CrossRef  CAS  Google Scholar 

  41. Malhotra B, Anu K, Harsha K (2015) Review-antimicrobial food packaging: potential and pitfalls. Front Microbiol 6(611):1–9

    Google Scholar 

  42. Mali S, Victoria EM, Garcia M et al (2004) Barrier, mechanical and optical properties of plasticized Yam starch films. Carbohydr Polym 56:129–135

    CrossRef  CAS  Google Scholar 

  43. Marina R, Alfonso J, Mercedes P et al (2014) Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food Chem 1–31

    Google Scholar 

  44. Marra A, Silvestre C, Duraccio D et al (2016) Polylactic acid/zinc oxide biocomposite films for food packaging application. Int J Biol Macromol 88:254–262

    CrossRef  CAS  Google Scholar 

  45. Mostafa HM, Sourell H, Bockisch FJ (2010) The mechanical properties of some bioplastics under different soil types for use as a biodegradable drip tubes. CIGR Ejournal 12:1–8

    Google Scholar 

  46. Murariu M, Dechief AL, Bonnaud L et al (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab 95(5):889–900

    CrossRef  CAS  Google Scholar 

  47. Mushi NE, Utsel S, Berglund LA (2014) Nanostructured biocomposite films of high toughness based on native chitin nanofibers and chitosan. Front Chem 2:99

    CrossRef  CAS  Google Scholar 

  48. Nascimento P, Marim R, Carvalho G et al (2016) Nanocellulose produced from rice hulls and its effect on the properties of biodegradable starch films. Mater Res 19(1):167–174

    CrossRef  Google Scholar 

  49. Neelamana IK, Thomas S, Parameswaranpillai J (2013) Characteristics of banana fibers and banana fiber reinforced phenol formaldehyde composites-macroscale to nanoscale. J Appl Polym Sci 130(2):1239–1246

    CrossRef  CAS  Google Scholar 

  50. Ojijo V, Sinha Ray S (2013) Processing strategies in bionanocomposites. Prog Polym Sci 38(10–11):1543–1589

    CrossRef  CAS  Google Scholar 

  51. Oksman K, Aitomäki Y, Mathew AP et al (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A: Appl Sci Manuf 83:2–18

    CrossRef  CAS  Google Scholar 

  52. Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos Part A: Appl Sci Manuf 40(4):469–475

    CrossRef  CAS  Google Scholar 

  53. Olatunji O, Richard O (2016) Processing and characterization of natural polymers. In: Olatunji O (ed) Natural polymers. Springer International Publishing, Switzerland, pp 19–34

    CrossRef  Google Scholar 

  54. Öner M, İlhan B (2016) Fabrication of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites with reinforcement by hydroxyapatite using extrusion processing. Mater Sci Eng, C 65:19–26

    CrossRef  CAS  Google Scholar 

  55. Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Proc 2:296–303

    Google Scholar 

  56. Pandey JK, Reddy KR, Kumar AP et al (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 88:234–250

    CrossRef  CAS  Google Scholar 

  57. Pazourkova L, Martynkova G, Placha D (2015) Preparation and mechanical properties of polymeric nanocomposites with hydroxyapatite and hydroxyapatite/clay mineral fillers—review. J Nanotechnol: Nanomed Nanobiotechnol 2(007):1–8

    Google Scholar 

  58. Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly (lactic acid)/cellulose Whiskers nanocomposites. Compos Sci Technol 67:2535–2544

    CrossRef  CAS  Google Scholar 

  59. Pinto AM, Cabral J, Tanaka DAP et al (2012) Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly(lactic acid) films. Polym Int 62(1):33–40

    Google Scholar 

  60. Pinto RJB, Daina S, Sadocco P et al (2013) Antibacterial activity of nanocomposites of copper and cellulose. BioMed Res Int, 1–6

    Google Scholar 

  61. Qin Y, Yang J, Xue J (2015) Characterization of antimicrobial poly(lactic acid)/ poly(trimethylene carbonate) films with cinnamaldehyde. J Mater Sci V50(3):1150–1158

    CrossRef  CAS  Google Scholar 

  62. Ramos M, Jiménez A, Peltzer M et al (2014) Development of novel nano-composite antioxidants films based on poly (lactic acid) and tymol for active packaging. Food Chem 162:149–155

    CrossRef  CAS  Google Scholar 

  63. Saba N, Paridah MT, Mohammad J (2014) Potentiality of nano filler/natural fiber filled polymer hybrid composites. A review. Polymers 2014(6): 2247–2273

    Google Scholar 

  64. Saeedeh SA, Hosseini H, Mohammadifar MA et al (2014) Characterization of k-carrageenan films incorporated plant essentialoils with improved antimicrobial activity. Carbohydr Polym 101:582–591

    CrossRef  CAS  Google Scholar 

  65. Salehifar M, Mohammad Hadi BN, Reza A et al (2013) Effect of LDPE/MWCNT films on the shelf life of Iranian Lavash bread. Eur J Exp Biol 3(6):183–188

    CAS  Google Scholar 

  66. Salit MS, Jawaid M, Yusoff NB, Hoque ME (2015) Manufacturing of natural fibre reinforced polymer composites. Springer, Switzerland

    CrossRef  Google Scholar 

  67. Sengupta R, Chakraborty S, Bandyopadhyay S et al (2007) A short review on rubber/ clay nanocomposites with emphasis on mechanical properties. Engineering 47:21–25

    Google Scholar 

  68. Shan GF, Gong X, Chen WP et al (2011) Effect of multi-walled carbon nanotubes on crystallization behavior of poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Coll Polym Sci 289(9):1005–1014

    CrossRef  CAS  Google Scholar 

  69. Siemann U (2005) Solvent cast technology—a versatile tool for thin film production. Prog Coll Polym Sci 130:1–14

    CAS  Google Scholar 

  70. Singh P, Ali AW, Sven S (2011) Active packaging of food products: recent trends. Nutr Food Sci 41(4):249–260

    CrossRef  Google Scholar 

  71. Sinha RS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079

    CrossRef  CAS  Google Scholar 

  72. Sinha RS, Maiti P, Okamoto M et al (2002) New polylactide/layered silicate nanocomposites. 1. Preparation, characterization, and properties. Macromolecules 35(8):3104–3110

    Google Scholar 

  73. Siracusa V (2012) Food packaging permeability behaviour: a report. Int J Polym Sci 2012:1–11

    CrossRef  CAS  Google Scholar 

  74. SiracusaV Rocculi P, Romani S et al (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643

    CrossRef  CAS  Google Scholar 

  75. Siti Nur E’zzati MA, Anuar H, Siti Munirah Salimah, AR (2018) Effect of coupling agent on durian skin fibre nanocomposite reinforced polypropylene. In: IOP conference series: materials science and engineering, University Islamic University Malaysia, Malaysia, 8–9 August 2017

    Google Scholar 

  76. Souza AC, Souza C, Dias AMA et al (2014) Impregnation of cinnamaldehyde into cassava starch biocomposite films using supercritical fluid technology for the development of food active packaging. Carbohydr Polym 102:830–837

    CrossRef  CAS  Google Scholar 

  77. Sriupayoa J, Supaphola P, Blackwell J et al (2005) Preparation and characterization of alpha-Chitin Whisker-reinforced poly (vinyl alcohol) nanocomposite films with or without heat treatment. Polymer 46(15):5637–5644

    CrossRef  CAS  Google Scholar 

  78. Suzuki S, Shimahashi K, Takahara J et al (2005) Effect of addition of water-soluble chitin on amylose film. Biomacromol 6:3238–3242

    CrossRef  CAS  Google Scholar 

  79. Talegaonkar S, Sharma H, Pandey S et al (2017) Chapter 3: Bionanocomposites: smart biodegradable packaging material for food preservation. In: Grumezescu AM (ed) Food Packaging, Nanotechnology in the Agri-Food Industry 7. Elsevier, United Kingdom, pp 79–110

    Google Scholar 

  80. Tammaro L, Vittoria V, Bugatti V (2014) Dispersion of modified layered double hydroxides in poly(ethylene terephthalate) by high energy ball milling for food packaging applications. Eur Polym J 52(1):172–180

    CrossRef  CAS  Google Scholar 

  81. Tang XZ, Kumar P, Alavi S et al (2012) Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Cri Rev Food Sci Nut 52(5):426–442

    CrossRef  CAS  Google Scholar 

  82. Valdés A, Mellinas AC, Ramos M et al (2014) Natural additives and agricultural wastes in biopolymer formulations for food packaging. Front Chem 2(6):10

    Google Scholar 

  83. Villmow T, Pötschke P, Pegel S et al (2008) Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly (lactic acid) matrix. Polymer 49(16):3500–3509

    CrossRef  CAS  Google Scholar 

  84. Vodnar DV, Oana LP, Francisc VD (2015) Antimicrobial efficiency of edible films in food industry. Notule Botanicae Horti Agrobotamici 3(2):302–312

    Google Scholar 

  85. Wagner M, Oehlmann J (2009) Endocrine disruptors in bottled mineral water: total estrogenic burden and migration from plastic bottles. Environ Sci Pollut Res 16(3):278–286

    CrossRef  CAS  Google Scholar 

  86. Wen X, Lin Y, Han C et al (2009) Thermomechanical and optical properties ofbiodegradable poly(L-lactide)/silica nanocomposites by melt compounding. J Appl Polym Sci 114:3379–3388

    CrossRef  CAS  Google Scholar 

  87. Wu D, Wu L, Zhang M et al (2008) Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym Degrad Stab 93(8):1577–1584

    CrossRef  CAS  Google Scholar 

  88. Wu J, Yu C, Li Q (2017) Novel regenerable antimicrobial nanocomposite membranes: effect of silver loading and valence state. J Membr Sci 531:68–76

    CrossRef  CAS  Google Scholar 

  89. Wu J, Zheng Y, Song W et al (2014) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 104(1):762–771

    CrossRef  CAS  Google Scholar 

  90. Yahiaoui F, Benhacine F, Ferfera-Harrar H et al (2014) Development of antimicrobial PCL/nanoclay nanocomposite films with enhanced mechanical and water vapor barrier properties for packaging applications. Polym Bull 72(2): 235–254

    Google Scholar 

  91. Yoo S, Krochta JM (2011) Whey protein–polysaccharide blended edible film formation and barrier, tensile, thermal and transparency properties. J Sci Food Agric 91(14):2628–2636

    CrossRef  CAS  Google Scholar 

  92. Yu H, Yan C, Yao J (2014) Fully biodegradable food packaging materials based on functionalized cellulose nanocrystals/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. RSC Adv 4(104):59792–59802

    CrossRef  CAS  Google Scholar 

  93. Zehetmeyer G, Soares RMD, Brandelli A et al (2012) Evaluation of polypropylene/montmorillonite nanocomposites as food packaging material. Polym Bull 68(8):2199–2217

    CrossRef  CAS  Google Scholar 

  94. Zheng Y, Yan K, Zhao Y et al (2016) Preparation and characterization of poly (L-lactic acid)/hollow silica nanospheres nanocomposites. Fibers Polym 17(12):2020–2026

    CrossRef  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Ministry of Education Malaysia for the Fundamental Research Grant Scheme, FRGS14-105-0346, FRGS14-108-0349, FRGS16-003-0502 and RIGS16-085-0249 for the financial support and International Islamic University Malaysia for the facilities and equipment in making these studies a success.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Anuar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anuar, H. et al. (2019). Sustainable Nanocomposites in Food Packaging. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_15

Download citation