Structural Studies of Nucleic Acids

  • Yuri D. TsvetkovEmail author
  • Michael K. Bowman
  • Yuri A. Grishin


Nucleic acids have a very rich range of structures that are important in many biological contexts. PELDOR or DEER spectroscopy has provided a unique glimpse at the structures that form in solution and guide the response of the cellular machinery.


  1. 1.
    Schiemann O, Prisner TF (2007) Long-range distance determinations in biomacromolecules by EPR spectroscopy. Q Rev Biophys 40(1):1–53. Scholar
  2. 2.
    Jeschke G, Polyhach Y (2007) Distance measurements on spin-labelled biomacromolecules by pulsed electron paramagnetic resonance. Phys Chem Chem Phys 9(16):1895–1910. Scholar
  3. 3.
    Tsvetkov YD, Milov AD, Maryasov AG (2008) Pulse electron-electron double resonance (PELDOR) as nanometre range EPR spectroscopy. Usp Khim 77(6):515–550CrossRefGoogle Scholar
  4. 4.
    Sowa GZ, Qin PZ (2008) Site-directed spin labeling studies on nucleic acid structure and dynamics. Prog Nucleic Acid Re 82:147–197. Scholar
  5. 5.
    Schiemann O (2009) Mapping global folds of oligonucleotides by pulsed electron-electron double resonance. Meth Enzymol 469: Biophysical, chemical, and functional probes of RNA structure, interactions and folding, Pt B 469:329–351. Scholar
  6. 6.
    Reginsson GW, Schiemann O (2011) Studying bimolecular complexes with pulsed electron-electron double resonance spectroscopy. Biochem Soc T 39:128–139. Scholar
  7. 7.
    Reginsson GW, Schiemann O (2011) Pulsed electron-electron double resonance: beyond nanometre distance measurements on biomacromolecules. Biochem J 434:353–363. Scholar
  8. 8.
    Schiemann O, Weber A, Edwards TE, Prisner TF, Sigurdsson ST (2003) Nanometer distance measurements on RNA using PELDOR. J Am Chem Soc 125(12):3434–3435CrossRefGoogle Scholar
  9. 9.
    Kolhe P, Amend E, Singh SK (2010) Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation. Biotechnol Prog 26(3):727–733. Scholar
  10. 10.
    Ward R, Keeble DJ, El-Mkami H, Norman DG (2007) Distance determination in heterogeneous DNA model systems by pulsed EPR. ChemBioChem 8(16):1957–1964. Scholar
  11. 11.
    Schiemann O, Piton N, Mu YG, Stock G, Engels JW, Prisner TF (2004) A PELDOR-based nanometer distance ruler for oligonucleotides. J Am Chem Soc 126(18):5722–5729. Scholar
  12. 12.
    Piton N, Mu YG, Stock G, Prisner TF, Schiemann O, Engels JW (2007) Base-specific spin-labeling of RNA for structure determination. Nucleic Acids Res 35(9):3128–3143CrossRefGoogle Scholar
  13. 13.
    Cai Q, Kusnetzow AK, Hubbell WL, Haworth IS, Gacho GPC, Van Eps N, Hideg K, Chambers EJ, Qin PZ (2006) Site-directed spin labeling measurements of nanometer distances in nucleic acids using a sequence-independent nitroxide probe. Nucleic Acids Res 34(17):4722–4730. Scholar
  14. 14.
    Cai Q, Kusnetzow AK, Hideg K, Price EA, Haworth IS, Qin PZ (2007) Nanometer distance measurements in RNA using site-directed spin Labeling. Biophys J 93(6):2110–2117. Scholar
  15. 15.
    Shevelev GY, Krumkacheva OA, Lomzov AA, Kuzhelev AA, Trukhin DV, Rogozhnikova OY, Tormyshev VM, Pyshnyi DV, Fedin MV, Bagryanskaya EG (2015) Triarylmethyl labels: toward improving the accuracy of EPR nanoscale distance measurements in DNAs. J Phys Chem B 119(43):13641–13648CrossRefGoogle Scholar
  16. 16.
    Shevelev GY, Krumkacheva OA, Lomzov AA, Kuzhelev AA, Rogozhnikova OY, Trukhin DV, Troitskaya TI, Tormyshev VM, Fedin MV, Pyshnyi DV, Bagryanskaya EG (2014) Physiological-temperature distance measurement in nucleic acid using triarylmethyl-based spin labels and pulsed dipolar EPR spectroscopy. J Am Chem Soc 136(28):9874–9877. Scholar
  17. 17.
    Raitsimring AM, Gunanathan C, Potapov A, Efremenko I, Martin JML, Milstein D, Goldfarb D (2007) Gd3+ complexes as potential spin labels for high field pulsed EPR distance measurements. J Am Chem Soc 129(46):14138–14139. Scholar
  18. 18.
    Potapov A, Song Y, Meade TJ, Goldfarb D, Astashkin AV, Raitsimring A (2010) Distance measurements in model bis-Gd(III) complexes with flexible “bridge”. Emulation of biological molecules having flexible structure with Gd(III) labels attached. J Magn Reson 205 (1):38–49CrossRefGoogle Scholar
  19. 19.
    Song Y, Meade TJ, Astashkin AV, Klein EL, Enemark JH, Raitsimring A (2011) Pulsed dipolar spectroscopy distance measurements in biomacromolecules labeled with Gd(III) markers. J Magn Reson 210(1):59–68. Scholar
  20. 20.
    Yang ZY, Kise D, Saxena S (2010) An approach towards the measurement of nanometer range distances based on Cu2+ Ions and ESR. J Phys Chem B 114(18):6165–6174. Scholar
  21. 21.
    Sicoli G, Mathis G, Delalande O, Boulard Y, Gasparutto D, Gambarelli S (2008) Double electron-electron resonance (DEER): a convenient method to probe DNA conformational changes. Angew Chem Int Edit 47(4):735–737. Scholar
  22. 22.
    Yu H, Mu YG, Nordenskiold L, Stock G (2008) Influence of nitroxide spin labels on RNA structure: a molecular dynamics simulation study. J Chem Theory Comput 4(10):1781–1787. Scholar
  23. 23.
    Romainczyk O, Endeward B, Prisner TF, Engels JW (2011) The RNA-DNA hybrid structure determined by EPR, CD and RNase H1. Mol BioSyst 7(4):1050–1052. Scholar
  24. 24.
    Savitsky A, Dubinskii AA, Flores M, Lubitz W, Mobius K (2007) Orientation-resolving pulsed electron dipolar high-field EPR spectroscopy on disordered solids: I. Structure of spin-correlated radical pairs in bacterial photosynthetic reaction centers. J Phys Chem B 111 (22):6245–6262. Scholar
  25. 25.
    Marko A, Margraf D, Yu H, Mu Y, Stock G, Prisner T (2009) Molecular orientation studies by pulsed electron-electron double resonance experiments. J Chem Phys 130(6):064102. Scholar
  26. 26.
    Marko A, Margraf D, Cekan P, Sigurdsson ST, Schiemann O, Prisner TF (2010) Analytical method to determine the orientation of rigid spin labels in DNA. Phys Rev E 81(2):021911. Scholar
  27. 27.
    Schiemann O, Cekan P, Margraf D, Prisner TF, Sigurdsson ST (2009) Relative orientation of rigid nitroxides by PELDOR: beyond distance measurements in nucleic acids. Angew Chem Int Edit 48(18):3292–3295CrossRefGoogle Scholar
  28. 28.
    Barhate N, Cekan P, Massey AP, Sigurdsson ST (2007) A nucleoside that contains a rigid nitroxide spin label: a fluorophore in disguise. Angew Chem Int Edit 46(15):2655–2658CrossRefGoogle Scholar
  29. 29.
    Gophane DB, Endeward B, Prisner TF, Sigurdsson ST (2014) Conformationally restricted isoindoline-derived spin labels in duplex DNA: distances and rotational flexibility by pulsed electron-electron double resonance spectroscopy. Chem-Eur J 20(48):15913–15919. Scholar
  30. 30.
    Tkach I, Halbmair K, Hobartner C, Bennati M (2014) High-frequency 263 GHz PELDOR. Appl Magn Reson 45(10):969–979. Scholar
  31. 31.
    Hagerman PJ (1988) Flexibility of DNA. Annu Rev Biophys Bio 17:265–286CrossRefGoogle Scholar
  32. 32.
    Gore J, Bryant Z, Nollmann M, Le MU, Cozzarelli NR, Bustamante C (2006) DNA overwinds when stretched. Nature 442(7104):836–839. Scholar
  33. 33.
    Marko JF (1997) Stretching must twist DNA. Europhys Lett 38(3):183–188. Scholar
  34. 34.
    Mathew-Fenn RS, Das R, Harbury PAB (2008) Remeasuring the double helix. Science 322(5900):446–449. Scholar
  35. 35.
    Marko A, Denysenkov V, Margraft D, Cekan P, Schiemann O, Sigurdsson ST, Prisner TF (2011) Conformational flexibility of DNA. J Am Chem Soc 133(34):13375–13379CrossRefGoogle Scholar
  36. 36.
    Sicoli G, Wachowius F, Bennati M, Hobartner C (2010) Probing secondary structures of spin-labeled RNA by pulsed EPR spectroscopy. Angew Chem Int Edit 49(36):6443–6447. Scholar
  37. 37.
    Krstic I, Frolow O, Sezer D, Endeward B, Weigand JE, Suess B, Engels JW, Prisner TF (2010) PELDOR spectroscopy reveals preorganization of the neomycin-responsive riboswitch tertiary structure. J Am Chem Soc 132(5):1454–1455. Scholar
  38. 38.
    Grytz CM, Marko A, Cekan P, Sigurdsson ST, Prisner TF (2016) Flexibility and conformation of the cocaine aptamer studied by PELDOR. Phys Chem Chem Phys 18(4):2993–3002. Scholar
  39. 39.
    Kim NK, Bowman MK, DeRose VJ (2010) Precise mapping of RNA tertiary structure via nanometer distance measurements with double electron-electron resonance spectroscopy. J Am Chem Soc 132(26):8882–8884. Scholar
  40. 40.
    Zhang XJ, Tung CS, Sowa GZ, Hatmal MM, Haworth IS, Qin PZ (2012) Global structure of a three-way junction in a Phi29 packaging RNA dimer determined using site-directed spin labeling. J Am Chem Soc 134(5):2644–2652. Scholar
  41. 41.
    Freeman ADJ, Ward R, El Mkami H, Lilley DMJ, Norman DG (2011) Analysis of conformational changes in the DNA junction-resolving enzyme T7 endonuclease I on binding a four-way junction using EPR. Biochemistry-Us 50(46):9963–9972. Scholar
  42. 42.
    Danielsson J, Inomata K, Murayama S, Tochio H, Lang LS, Shirakawa M, Oliveberg M (2013) Pruning the ALS-associated protein SOD1 for in-cell NMR. J Am Chem Soc 135(28):10266–10269. Scholar
  43. 43.
    Banci L, Barbieri L, Bertini I, Luchinat E, Secci E, Zhao YG, Aricescu AR (2013) Atomic-resolution monitoring of protein maturation in live human cells by NMR. Nat Chem Biol 9(5):297–300. Scholar
  44. 44.
    Sakai T, Tochio H, Tenno T, Ito Y, Kokubo T, Hiroaki H, Shirakawa M (2006) In-cell NMR spectroscopy of proteins inside Xenopus laevis oocytes. J Biomol NMR 36(3):179–188. Scholar
  45. 45.
    Ogino S, Kubo S, Umemoto R, Huang SX, Nishida N, Shimada I (2009) Observation of NMR signals from proteins introduced into living mammalian cells by reversible membrane permeabilization using a pore-forming toxin, streptolysin O. J Am Chem Soc 131(31):10834–10835. Scholar
  46. 46.
    Azarkh M, Singh V, Okle O, Seemann IT, Dietrich DR, Hartig JS, Drescher M (2013) Site-directed spin-labeling of nucleotides and the use of in-cell EPR to determine long-range distances in a biologically relevant environment. Nat Protoc 8(1):131–147. Scholar
  47. 47.
    Azarkh M, Okle O, Eyring P, Dietrich DR, Drescher M (2011) Evaluation of spin labels for in-cell EPR by analysis of nitroxide reduction in cell extract of Xenopus laevis oocytes. J Magn Reson 212(2):450–454. Scholar
  48. 48.
    Krstic I, Hansel R, Romainczyk O, Engels JW, Dotsch V, Prisner TF (2011) Long-range distance measurements on nucleic acids in cells by pulsed EPR spectroscopy. Angew Chem Int Edit 50(22):5070–5074. Scholar
  49. 49.
    Igarashi R, Sakai T, Hara H, Tenno T, Tanaka T, Tochio H, Shirakawa M (2010) Distance determination in proteins inside Xenopus laevis oocytes by double electron-electron resonance experiments. J Am Chem Soc 132(24):8228–8229. Scholar
  50. 50.
    Bowman MK, Maryasov AG, Kim N, DeRose VJ (2004) Visualization of distance distribution from pulsed double electron-electron resonance data. Appl Magn Reson 26(1–2):23–39. Scholar
  51. 51.
    Nakata M, Zanchetta G, Chapman BD, Jones CD, Cross JO, Pindak R, Bellini T, Clark NA (2007) End-to-end stacking and liquid crystal condensation of 6-to 20-base pair DNA duplexes. Science 318(5854):1276–1279. Scholar
  52. 52.
    Duchardt-Ferner E, Weigand JE, Ohlenschlager O, Schtnidtke SR, Suess B, Wohnert J (2010) Highly modular structure and ligand binding by conformational capture in a minimalistic riboswitch. Angew Chem Int Edit 49(35):6216–6219. Scholar
  53. 53.
    Nozinovic S, Furtig B, Jonker HRA, Richter C, Schwalbe H (2010) High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Res 38(2):683–694. Scholar
  54. 54.
    Bochman ML, Paeschke K, Zakian VA (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet 13(11):770–780. Scholar
  55. 55.
    Singh V, Azarkh M, Exner TE, Hartig JS, Drescher M (2009) Human telomeric quadruplex conformations studied by pulsed EPR. Angew Chem Int Edit 48(51):9728–9730. Scholar
  56. 56.
    Wang Y, Patel DJ (1993) Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1(4):263–282. Scholar
  57. 57.
    Phan AT, Kuryavyi V, Luu KN, Patel DJ (2007) Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution. Nucleic Acids Res 35(19):6517–6525. Scholar
  58. 58.
    Parkinson GN, Lee MPH, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417(6891):876–880. Scholar
  59. 59.
    Azarkh M, Singh V, Okle O, Dietrich DR, Hartig JS, Drescher M (2012) Intracellular conformations of human telomeric quadruplexes studied by electron paramagnetic resonance spectroscopy. ChemPhysChem 13(6):1444–1447. Scholar
  60. 60.
    Shiokawa K, Tashiro K, Yamana K, Sameshima M (1987) Electron-microscopic studies of giant nucleus-like structure formed by lambda DNA introduced into the cytoplasm of Xenopus laevis fertilized-eggs and embryos. Cell Differ Dev 20(4):253–261. Scholar
  61. 61.
    Singh V, Azarkh M, Drescher M, Hartig JS (2012) Conformations of individual quadruplex units studied in the context of extended human telomeric DNA. Chem Commun 48(66):8258–8260. Scholar
  62. 62.
    Martorana A, Bellapadrona G, Feintuch A, Di Gregorio E, Aime S, Goldfarb D (2014) Probing protein conformation in cells by EPR distance measurements using Gd3+ spin labeling. J Am Chem Soc 136(38):13458–13465. Scholar
  63. 63.
    Goldfarb D (2014) Gd3+ spin labeling for distance measurements by pulse EPR spectroscopy. Phys Chem Chem Phys 16(21):9685–9699. Scholar
  64. 64.
    Thonon D, Jacques V, Desreux JF (2007) A gadolinium triacetic monoamide DOTA derivative with a methanethiosulfonate anchor group. Relaxivity properties and conjug. Contrast Media Mol I 2(1):24–34. Scholar
  65. 65.
    Rossi L, Serafini S, Pierige F, Antonelli A, Cerasi A, Fraternale A, Chiarantini L, Magnani M (2005) Erythrocyte-based drug delivery. Expert Opin Drug Deliv 2(2):311–322. Scholar
  66. 66.
    Markov DE, Boeve H, Gleich B, Borgert J, Antonelli A, Sfara C, Magnani M (2010) Human erythrocytes as nanoparticle carriers for magnetic particle imaging. Phys Med Biol 55(21):6461–6473. Scholar
  67. 67.
    Hara H, Tenno T, Shirakawa M (2007) Distance determination in human ubiquitin by pulsed double electron-electron resonance and double quantum coherence ESR methods. J Magn Reson 184(1):78–84. Scholar
  68. 68.
    Sicoli G, Mathis G, Aci-Seche S, Saint-Pierre C, Boulard Y, Gasparutto D, Gambarelli S (2009) Lesion-induced DNA weak structural changes detected by pulsed EPR spectroscopy combined with site-directed spin labelling. Nucleic Acids Res 37(10):3165–3176. Scholar
  69. 69.
    Kuznetsov NA, Milov AD, Koval VV, Samoilova RI, Grishin YA, Knorre DG, Tsvetkov YD, Fedorova OS, Dzuba SA (2009) PELDOR study of conformations of double-spin-labeled single- and double-stranded DNA with non-nucleotide inserts. Phys Chem Chem Phys 11(31):6826–6832. Scholar
  70. 70.
    Kuznetsov NA, Milov AD, Isaev NP, Vorobjev YN, Koval VV, Dzuba SA, Fedorova OS, Tsvetkov YD (2011) PELDOR analysis of enzyme-induced structural changes in damaged DNA duplexes. Mol BioSyst 7(9):2670–2680. Scholar
  71. 71.
    Wunnicke D, Ding P, Seela F, Steinhoff HJ (2012) Site-directed spin labeling of DNA reveals mismatch-induced nanometer distance changes between flanking nucleotides. J Phys Chem B 116(14):4118–4123. Scholar
  72. 72.
    Flaender M, Sicoli G, Aci-Seche S, Reignier T, Maurel V, Saint-Pierre C, Boulard Y, Gambarelli S, Gasparutto D (2011) A triple spin-labeling strategy coupled with DEER analysis to detect DNA modifications and enzymatic repair. ChemBioChem 12(17):2560–2563. Scholar
  73. 73.
    Jeschke G, Chechik V, Ionita P, Godt A, Zimmermann H, Banham J, Timmel CR, Hilger D, Jung H (2006) DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data. Appl Magn Reson 30(3–4):473–498. Scholar
  74. 74.
    Jeschke G, Sajid M, Schulte M, Godt A (2009) Three-spin correlations in double electron-electron resonance. Phys Chem Chem Phys 11(31):6580–6591CrossRefGoogle Scholar
  75. 75.
    Takeuchi M, Lillis R, Demple B, Takeshita M (1994) Interactions of Escherichia coli endonuclease-IV and exonuclease-III with abasic sites in DNA. J Biol Chem 269(34):21907–21914PubMedGoogle Scholar
  76. 76.
    Banerjee A, Santos WL, Verdine GL (2006) Structure of a DNA glycosylase searching for lesions. Science 311(5764):1153–1157. Scholar
  77. 77.
    Qi Y, Spong MC, Nam K, Karplus M, Verdine GL (2010) Entrapment and structure of an extrahelical guanine attempting to enter the active site of a bacterial DNA glycosylase, MutM. J Biol Chem 285(2):1468–1478. Scholar
  78. 78.
    Gilboa R, Zharkov DO, Golan G, Fernandes AS, Gerchman SE, Matz E, Kycia JH, Grollman AP, Shoham G (2002) Structure of formamidopyrimidine-DNA glycosylase covalently complexed to DNA. J Biol Chem 277(22):19811–19816. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yuri D. Tsvetkov
    • 1
    Email author
  • Michael K. Bowman
    • 2
  • Yuri A. Grishin
    • 3
  1. 1.The Voevodsky Institute of Chemical Kinetics and CombustionNovosibirskRussia
  2. 2.Department of Chemistry and BiochemistryUniversity of AlabamaTuscaloosaUSA
  3. 3.The Voevodsky Institute of Chemical Kinetics and CombustionNovosibirskRussia

Personalised recommendations