Abstract
To achieve peak performance of an algorithm (in particular for problems in AI), algorithm configuration is often necessary to determine a well-performing parameter configuration. So far, most studies in algorithm configuration focused on proposing better algorithm configuration procedures or on improving a particular algorithm’s performance. In contrast, we use all the collected empirical performance data gathered during algorithm configuration runs to generate extensive insights into an algorithm, given problem instances and the used configurator. To this end, we provide a tool, called CAVE, that automatically generates comprehensive reports and insightful figures from all available empirical data. CAVE aims to help algorithm and configurator developers to better understand their experimental setup in an automated fashion. We showcase its use by thoroughly analyzing the well studied SAT solver spear on a benchmark of software verification instances and by empirically verifying two long-standing assumptions in algorithm configuration and parameter importance: (i) Parameter importance changes depending on the instance set at hand and (ii) Local and global parameter importance analysis do not necessarily agree with each other.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
We ignore in this simplified view that several budgets have to be defined, such as, the configuration budget (e.g., time budget or maximal number of algorithm calls) and resource limits of the target algorithm runs (e.g., runtime and memory limits).
- 3.
Typically, the instance set is split into a training and a test set. On the training set, the target algorithm is optimized and on the test set, an unbiased cost estimate of the optimized parameter configuration is obtained.
- 4.
- 5.
The complete generated report can be found at
- 6.
In contrast to Xu et al. [20], we normalize the relabelling cost of continuous parameters to [0, 1] since otherwise relabelling of continuous parameters would dominate the similarity metric compared to relabelling of discrete parameters.
- 7.
In capped fANOVA, all cost values to train a marginalized EPM are capped at the cost of the default configuration \(\mathbf {\theta }_\text {def}\): \(c(\mathbf {\theta }) := \min {(c(\mathbf {\theta }_\text {def}),c(\mathbf {\theta }))}\).
- 8.
- 9.
References
Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. JAIR 36, 267–306 (2009)
Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 142–157. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7_14
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello Coello, C.A. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40
Ansótegui, C., Malitsky, Y., Sellmann, M., Tierney, K.: Model-based genetic algorithms for algorithm configuration. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of IJCAI’15, pp. 733–739 (2015)
López-Ibáñez, M., Dubois-Lacoste, J., Caceres, L.P., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)
Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H., Leyton-Brown, K.: The configurable SAT solver challenge (CSSC). AIJ 243, 1–25 (2017)
Fawcett, C., Helmert, M., Hoos, H., Karpas, E., Roger, G., Seipp, J.: Fd-autotune: domain-specific configuration using fast-downward. In: Helmert, M., Edelkamp, S. (eds.) Proceedings of ICAPS’11 (2011)
Mu, Z., Hoos, H.H., Stützle, T.: The impact of automated algorithm configuration on the scaling behaviour of state-of-the-Art inexact TSP solvers. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp. 157–172. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50349-3_11
Wagner, M., Friedrich, T., Lindauer, M.: Improving local search in a minimum vertex cover solver for classes of networks. In: Proceedings of IEEE CEC, pp. 1704–1711. IEEE (2017)
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed integer programming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 186–202. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13520-0_23
Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Proceedings of NIPS’12, pp. 2960–2968 (2012)
Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: Proceedings of ICLR’17 (2017)
Bischl, B., et al.: ASlib: a benchmark library for algorithm selection. AIJ 41–58 (2016)
Smith-Miles, K., Baatar, D., Wreford, B., Lewis, R.: Towards objective measures of algorithm performance across instance space. Comput. OR 45, 12–24 (2014)
Hutter, F., Hoos, H., Leyton-Brown, K.: Identifying key algorithm parameters and instance features using forward selection. In: Proceedings of LION’13, pp. 364–381 (2013)
Hutter, F., Hoos, H., Leyton-Brown, K.: An efficient approach for assessing hyperparameter importance. In: Proceedings of ICML’14, pp. 754–762 (2014)
Fawcett, C., Hoos, H.: Analysing differences between algorithm configurations through ablation. J. Heuristics 22(4), 431–458 (2016)
Biedenkapp, A., Lindauer, M., Eggensperger, K., Fawcett, C., Hoos, H., Hutter, F.: Efficient parameter importance analysis via ablation with surrogates. In: Proceedings of AAAI’17, pp. 773–779 (2017)
Babić, D., Hutter, F.: Spear theorem prover. Solver description. SAT Competition (2007)
Xu, L., KhudaBukhsh, A.R., Hoos, H.H., Leyton-Brown, K.: Quantifying the similarity of algorithm configurations. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp. 203–217. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50349-3_14
Bussieck, M., Drud, A.S., Meeraus, A., Pruessner, A.: Quality assurance and global optimization. In Bliek, C., Jermann, C., Neumaier, A. (eds.) Proceedings of GOCOS. Lecture Notes in Computer Science, vol. 2861. Springer (2003) 223–238
Bussieck, M., Dirkse, S., Vigerske, S.: PAVER 2.0: an open source environment for automated performance analysis of benchmarking data. J. Glob. Optim. 59(2–3), 259–275 (2014)
Rice, J.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
Nell, C., Fawcett, C., Hoos, H.H., Leyton-Brown, K.: HAL: a framework for the automated analysis and design of high-performance algorithms. In: Coello Coello, C.A. (ed.) LION 2011. LNCS, vol. 6683, pp. 600–615. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_47
Falkner, S., Lindauer, M., Hutter, F.: SpySMAC: automated configuration and performance analysis of SAT solvers. In: Proceedings of SAT’15, pp. 1–8 (2015)
Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., Sculley, D.: Google vizier: a service for black-box optimization. In: Proceedings of KDD, pp. 1487–1495. ACM (2017)
Heinrich, J., Weiskopf, D.: State of the art of parallel coordinates. In: Proceedings of Eurographics, Eurographics Association, pp. 95–116 (2013)
Lloyd, J., Duvenaud, D., Grosse, R., Tenenbaum, J., Ghahramani, Z.: Automatic construction and natural-language description of nonparametric regression models. In: Proceedings of AAAI’14, pp. 1242–1250 (2014)
Hutter, F., Xu, L., Hoos, H., Leyton-Brown, K.: Algorithm runtime prediction: methods and evaluation. AIJ 206, 79–111 (2014)
Breimann, L.: Random forests. MLJ 45, 5–32 (2001)
Nudelman, E., Leyton-Brown, K., Hoos, H.H., Devkar, A., Shoham, Y.: Understanding random sat: beyond the clauses-to-variables ratio. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 438–452. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8_33
Eggensperger, K., Lindauer, M., Hoos, H., Hutter, F., Leyton-Brown, K.: Efficient benchmarking of algorithm configuration procedures via model-based surrogates. Mach. Learn. (2018) (To appear)
Hutter, F., et al.: AClib: a benchmark library for algorithm configuration. In: Pardalos, P.M., Resende, M.G.C., Vogiatzis, C., Walteros, J.L. (eds.) LION 2014. LNCS, vol. 8426, pp. 36–40. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09584-4_4
Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based algorithm selection for SAT. JAIR 32, 565–606 (2008)
Schneider, M., Hoos, H.H.: Quantifying homogeneity of instance sets for algorithm configuration. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 190–204. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8_14
Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: automatically configuring algorithms for portfolio-based selection. In: Proceedings of AAAI’10, pp. 210–216 (2010)
Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC - instance-specific algorithm configuration. In: Proceedings of ECAI’10, pp. 751–756 (2010)
Kruskal, J.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1), 1–27 (1964)
Groenen, P., van de Velden, M.: Multidimensional scaling by majorization: A review. J. Stat. Softw. 73(8) (2016)
Lindauer, M., Hutter, F.: Warmstarting of model-based algorithm configuration. In: Proceedings of the AAAI conference (2018) (To appear)
Gerevini, A., Serina, I.: LPG: a planner based on local search for planning graphs with action costs. In: Proceedings of AIPS’02, pp. 13–22 (2002)
Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from theory to practice. AI 187–188, 52–89 (2012)
KhudaBukhsh, A., Xu, L., Hoos, H., Leyton-Brown, K.: SATenstein: automatically building local search SAT solvers from components. In: Proceedings of IJCAI’09, pp. 517–524 (2009)
Balint, A., Schöning, U.: Choosing probability distributions for stochastic local search and the role of make versus break. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 16–29. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_3
Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 454–469. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7_35
Meinshausen, N.: Quantile regression forests. JMLR 7, 983–999 (2006)
Acknowledgments
The authors acknowledge support by the state of Baden-Württemberg through bwHPC and the German Research Foundation (DFG) through grant no INST 39/963-1 FUGG and the Emmy Noether grant HU 1900/2-1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Biedenkapp, A., Marben, J., Lindauer, M., Hutter, F. (2019). CAVE: Configuration Assessment, Visualization and Evaluation. In: Battiti, R., Brunato, M., Kotsireas, I., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 12 2018. Lecture Notes in Computer Science(), vol 11353. Springer, Cham. https://doi.org/10.1007/978-3-030-05348-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-05348-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05347-5
Online ISBN: 978-3-030-05348-2
eBook Packages: Computer ScienceComputer Science (R0)