Skip to main content

Al-Based Nanocomposites Produced via Spark Plasma Sintering: Effect of Processing Route and Reinforcing Phases

  • Chapter
  • First Online:

Abstract

Spark plasma sintering (SPS) is a sintering technique utilizing uniaxial force and a pulsed direct current to perform metallic or ceramic particle consolidation in very short times. The high heating and cooling rates allow to prevent excessive grain growth favoring densification. Spark plasma sintering has been recognized, in the recent past, as a very useful method to produce metal matrix composites with enhanced mechanical and wear properties. Obviously, the materials final properties are strongly related to the reinforcement types and percentages as well as to the processing parameters employed during synthesis. First of all materials density and hardness depend on the employed heating and pressure conditions during sintering. The addition of reinforcing phases modifies the potential process parameters that can be employed during sintering and obviously the final materials properties. These are a direct function of different factors such as type, size, and percentage. All these aspects are described in the present chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aliyu IK, Saheb N, Fida Hassan S, Al-Aqeeli N (2015) Microstructure and properties of spark plasma sintered aluminum containing 1 wt.% SiC nanoparticles. Materials 5:70–83

    CAS  Google Scholar 

  • Anselmi-Tamburini U, Garay JE, Munir ZA (2005a) Fundamental investigations on the spark plasma sintering/synthesis process: III. Current effect on reactivity. Mater Sci Eng A 407:24–30

    Article  Google Scholar 

  • Anselmi-Tamburini U, Gennari S, Garay JE, Munir ZA (2005b) Fundamental investigations on the spark plasma sintering/synthesis process II. Modeling of current and temperature distributions. Mater Sci Eng A 394:139–148

    Article  Google Scholar 

  • Babu NK, Kallip K, Leparoux M, AlOgab KA, Maeder X, Rojas Dasilva YA (2016) Influence of microstructure and strengthening mechanism of AlMg5–Al2O3 nanocomposites prepared via spark plasma sintering. Mater Des 95:534–544

    Article  CAS  Google Scholar 

  • Bathul S, Anandani RC, Dhar A, Srivastava AK (2012) Microstructural features and mechanical properties of Al 5083/SiCp metal matrix nanocomposites produced by high energy ball milling and spark plasma sintering. Mater Sci Eng A 545:97–102

    Article  Google Scholar 

  • Bisht A, Srivastav M, Manoj Kumar R, Lahiri I, Lahiri D (2017) Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering. Mater Sci Eng A 695:20–28

    CAS  Google Scholar 

  • Boesl B, Lahiri D, Behdad S, Agarwal A (2014) Direct observation of carbon nanotube induced strengthening in aluminum composite via in situ tensile tests. Carbon 69:79–85

    Article  CAS  Google Scholar 

  • Cavaliere P (2004) Isothermal forging of AA2618 reinforced with 20% of alumina particles. Composites Part A 35:619–629

    Article  Google Scholar 

  • Cavaliere P, Sadeghi B, Shabani A (2017) Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering. J Mater Sci 52:8618–8629

    Article  CAS  Google Scholar 

  • Chen W, Anselmi-Tamburini U, Garay JE, Groza JR, Munir ZA (2005) Fundamental investigations on the spark plasma sintering/synthesis process I. Effect of dc pulsing on reactivity. Mater Sci Eng A 394:132–138

    Article  Google Scholar 

  • Chen B, Li S, Imai H, Jia L, Umeda J, Takahashi M, Kondoh K (2015) Carbon nanotube induced microstructural characteristics in powder metallurgy Al matrix composites and their effects on mechanical and conductive properties. J Alloys Compd 651:608–615

    Article  CAS  Google Scholar 

  • Chen B, Imai H, Umeda J, Takahashi M, Kondoh K (2017) Effect of spark plasma sintering conditions on tensile properties of aluminum matrix composites reinforced with multiwalled carbon nanotubes (MWCNTs). JOM 69(4):669–675

    Article  CAS  Google Scholar 

  • Dash K, Chaira D, Ray BC (2013) Synthesis and characterization of aluminium–alumina micro-and nano-composites by spark plasma sintering. Mater Res Bull 48(7):2535–2542

    Article  CAS  Google Scholar 

  • Diouf S, Molinari A (2012) Densification mechanisms in spark plasma sintering: effect of particle size and pressure. Powder Technol 221:220–227

    Article  CAS  Google Scholar 

  • Dong Hoon N, Seung Il C, Kyung Moon L, Jun Ho J, Hoon Mo P, Jong Kook L, Soon Hyung H (2016) Thermal properties of carbon nanotubes reinforced aluminum-copper matrix nanocomposites. J Nanosci Nanotechnol 16(11):12013–12016

    Article  Google Scholar 

  • Esawi AMK, Morsi K, Sayed A, Taher M, Lanka S (2010) Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol 70:2237–2241

    Article  CAS  Google Scholar 

  • Firestein KL, Steinman AE, Golovin IS, Cifre J, Obraztsova EA, Matveev AT, Kovalskii AM, Lebedev OI, Shtansky DV, Golberg D (2015) Fabrication, characterization, and mechanical properties of spark plasma sintered Al–BN nanoparticle composites. Mater Sci Eng A 642:104–112

    Article  CAS  Google Scholar 

  • Firestein KL, Corthay S, Steinman AE, Matveev AT, Kovalskii AM, Sukhorukova IV, Golberg D, Shtansky DV (2017) High-strength aluminum-based composites reinforced with BN, AlB2 and AlN particles fabricated via reactive spark plasma sintering of Al-BN powder mixtures. Mater Sci Eng A 681:1–9

    Article  CAS  Google Scholar 

  • Garay J (2010) Current-activated, pressure-assisted densification of materials. Annu Rev Mater Res 40:445–468. https://doi.org/10.1146/annurev-matsci-070909-104433

    Google Scholar 

  • Garbiec D, Jurczyk M, Levintant-Zayonts N, Mościcki T (2015) Properties of Al–Al 2 O 3 composites synthesized by spark plasma sintering method. Archiv Mater Manuf Eng 15(4):933–939

    Google Scholar 

  • Ghasali E, Pakseresht A, Safari-kooshali F, Agheli M, Ebadzadeh T (2015) Investigation on microstructure and mechanical behavior of Al–ZrB2 composite prepared by microwave and spark plasma sintering. Mater Sci Eng A 627:27–30

    Article  CAS  Google Scholar 

  • Ghasali E, Alizade M, Ebadzadeh T (2016a) Mechanical and microstructure comparison between microwave and spark plasma sintering of Al-B4C composite. J Alloys Compd 655:93–98

    Article  CAS  Google Scholar 

  • Ghasali E, Nouraniana H, Rahbari A, Majidian H, Alizadeh M, Ebadzadeh T (2016b) Low temperature sintering of aluminum-zircon metal matrix composite prepared by spark plasma sintering. Mater Res 19(5):1189–1192

    Article  CAS  Google Scholar 

  • Ghasali E, Pakseresht AH, Alizadeh M, Shirvanimoghaddam K, Ebadzadeh T (2016c) Vanadium carbide reinforced aluminum matrix composite prepared by conventional, microwave and spark plasma sintering. J Alloys Compd 688:527–533

    Article  CAS  Google Scholar 

  • Ghasali E, Shirvanimoghaddam K, Pakseresht AH, Alizadeh M, Ebadzadeh T (2017) Evaluation of microstructure and mechanical properties of Al-TaC composites prepared by spark plasma sintering process. J Alloys Compd 705:283–289

    CAS  Google Scholar 

  • Grácio JJ, Picu CR, Vincze G, Mathew N, Schubert T, Lopes A, Buchheim C (2013) Mechanical behavior of AlSiC nanocomposites produced by ball milling and spark plasma sintering. Met Trans A 44(11):5259–5269

    Article  Google Scholar 

  • Guillon O, Gonzalez-Julian J, Dargatz B, Kessel T, Schierning G, Räthel J, Herrmann M (2014) Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater 16(7):830–849

    Article  CAS  Google Scholar 

  • Guo B, Song M, Yi J, Ni S, Shen T, Du Y (2017) Improving the mechanical properties of carbon nanotubes reinforced pure aluminum matrix composites by achieving non-equilibrium interface. Mater Des 120:56–65

    Article  CAS  Google Scholar 

  • Jin-Zhi L, Ming-Jen T, Idapalapati S (2010) Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites. Mater Des 31:S96–S100

    Article  Google Scholar 

  • Kubota M (2010) Solid-state reaction in mechanically milled and spark plasma sintered Al–B4C composite materials. J Alloys Compd 504S:S319–S322

    Article  Google Scholar 

  • Kubota M, Wynne PB (2007) Electron backscattering diffraction analysis of mechanically milled and spark plasma sintered pure aluminum. Scripta Mater 57:719–722

    Article  CAS  Google Scholar 

  • Kubota M, Kaneko J, Sugamata M (2008) Properties of mechanically milled and spark plasma sintered Al–AlB2 and Al–MgB2 nano-composite materials. Mater Sci Eng A 475:96–100

    Article  Google Scholar 

  • Kwon H, Park DH, Park Y, Silvain JF, Kawasaki A, Park Y (2010) Spark plasma sintering behavior of pure aluminum depending on various sintering temperatures. Met Mater Int 16(1):71–75

    Article  CAS  Google Scholar 

  • Kwon H, Leparoux M, Kawasaki A (2014) Functionally graded dual-nanoparticulate-reinforced aluminium matrix bulk materials fabricated by spark plasma sintering. J Mater Sci Technol 30(8):736–742

    Article  CAS  Google Scholar 

  • Kwon H, Park J, Joo S, Hong S, Mun J (2016) Spark plasma sintering behavior and heat dissipation characteristics of the aluminum matrix composite materials with the contents of graphite. J Korean Powder Metall Inst 23(3):195–201

    Article  Google Scholar 

  • Lalet G, Kurita H, Miyazaki T, Kawasaki A, Silvain JF (2014) Microstructure of a carbon fiber reinforced aluminum matrix composite fabricated by spark plasma sintering in various pulse conditions. J Mater Sci 49(8):3268–3275

    Article  CAS  Google Scholar 

  • Le GM, Godfrey A, Hansen N, Liu W, Winther G, Huang X (2013) Influence of grain size in the near-micrometre regime on the deformation microstructure in aluminium. Acta Mater 61:7072–7086

    Article  CAS  Google Scholar 

  • Leon C, Rodriguez-Ortiz G, Aguilar-Reyes E (2009) Cold compaction of metal–ceramic powders in the preparation of copper base hybrid materials. Mater Sci Eng A 526(1):106–112

    Article  Google Scholar 

  • Li M, Mab K, Jiang L, Yang H, Lavernia EJ, Zhang L, Schoenung JM (2016) Synthesis and mechanical behavior of nano structured Al5083/n-TiB2 metal matrix composites. Mater Sci Eng A 656:241–248

    Article  CAS  Google Scholar 

  • Liao J-Z, Tan M-J, Sridhar I (2010) Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites. Mater Des 31:S96–S100

    Article  CAS  Google Scholar 

  • Liu D, Xiong Y, Topping TD, Zhou Y, Haines C, Paras J, Martin D, Kapoor D, Schoenung JM, Lavernia EJ (2012) Spark plasma sintering of cryomilled nanocrystalline Al alloy – part II: influence of processing conditions on densification and properties. Metall Mater Trans A 43:340–350

    Article  CAS  Google Scholar 

  • Liu Z-F, Zhang Z-H, Lu J-F, Korznikov AV, Korznikova E, Wang F-C (2014) Effect of sintering temperature on microstructures and mechanical properties of spark plasma sintered nanocrystalline aluminum. Mater Des 64:625–630

    Article  CAS  Google Scholar 

  • Liu D, Xiong Y, Li P, Lin Y, Chen F, Zhang L, Schoenung JM, Lavernia EJ (2016) Microstructure and mechanical behavior of NS/UFG aluminum prepared by cryomilling and spark plasma sintering. J Alloys Compd 679:426–435

    Article  CAS  Google Scholar 

  • Milligan J, Gauvin R, Brochu M (2013) Consolidation of cryomilled Al–Si using spark plasma sintering. Philos Mag 93(19):2445–2464

    Article  CAS  Google Scholar 

  • Mizuuchi K, Inoue K, Agari Y, Nagaoka T, Sugioka M, Tanaka M, Takeuchi T, Tani J-I, Kawahara M, Makino Y, Ito M (2012) Processing and thermal properties of Al/AlN composites in continuous solid–liquid co-existent state by spark plasma sintering. Composites Part B 43:1557–1563

    Article  CAS  Google Scholar 

  • Mizuuchi K, Inoue K, Agari Y, Sugioka M, Tanaka M, Takeuchi T, Tani J, Kawahara M, Makino Y, Ito M (2014a) Bimodal and monomodal diamond particle effect on the thermal properties of diamond-particle-dispersed Al–matrix composite fabricated by SPS. Microelectron Reliab 54:2463–2470

    Article  CAS  Google Scholar 

  • Mizuuchi K, Inoue K, Agari Y, Sugioka M, Tanaka M, Takeuchi T, Tani J, Kawahara M, Makino Y, Ito M (2014b) Thermal properties of cBN particle dispersed Al matrix composites fabricated by SPS. J Jpn Soc Powder Metall 61(12):549–555

    Article  CAS  Google Scholar 

  • Mizuuchi K, Inoue K, Agari Y, Sugioka M, Tanaka M, Takeuchi T, Tani J, Kawahara M, Makino Y, Ito M (2015) Effect of bimodal cBN particle size distribution on thermal conductivity of Al/cBN composite fabricated by SPS. J Jpn Soc Powder Metall 62(5):263–270

    Article  CAS  Google Scholar 

  • Morsi K, Esawi AMK, Borah P, Lanka S, Sayed A (2010a) Characterization and spark plasma sintering of mechanically milled aluminum-carbon nanotube (CNT) composite powders. J Compos Mater 44:1991–2003

    Article  CAS  Google Scholar 

  • Morsi K, Esawi AMK, Lanka S, Sayed A, Taher M (2010b) Spark plasma extrusion (SPE) of ball-milled aluminum and carbon nanotube reinforced aluminum composite powders. Composites Part A 41:322–326

    Article  Google Scholar 

  • Munir ZA, Anselmi-Tamburini U, Ohtanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41:763–777

    Article  CAS  Google Scholar 

  • Olevsky E, Froyen L (2006) Constitutive modeling of spark-plasma sintering of conductive materials. Scripta Mater 55:1175–1178

    Article  CAS  Google Scholar 

  • Olevsky EA, Froyen L (2009) Impact of thermal diffusion on densification during SPS. J Am Ceram Soc 92:S122–S132

    Article  CAS  Google Scholar 

  • Olevsky EA, Kandurkuri S, Froyen L (2007) Consolidation enhancement in spark-plasma sintering: impact of high heating rates. J Appl Phys 102(11):114913

    Google Scholar 

  • Ostovan F, Matori KA, Toozandehjani M, Oskoueian A, Yusoff HM, Yunus R, Ariff AHM, Quah HJ, Lim WF (2015) Effects of CNTs content and milling time on mechanical behavior of MWCNT-reinforced aluminum nanocomposites. Mater Chem Phys 166:160–166

    Article  CAS  Google Scholar 

  • Pakdel A, Witecka A, Rydzek G, Awang Shri DN (2017) A comprehensive microstructural analysis of Al–WC micro- and nano-composites prepared by spark plasma sintering. Mater Des 119:225–234

    Article  CAS  Google Scholar 

  • Sadeghi B, Shamanian M, Ashrafizadeh F, Cavaliere P, Rizzo A (2017) Influence of Al2O3 nanoparticles on microstructure and strengthening mechanism of Al-based nanocomposites produced via spark plasma sintering. J Mater Eng Perform 26:2928–2936

    Article  CAS  Google Scholar 

  • Saheb N, Aliyu IK, Hassan SF, Al-Aqeeli N (2014) Matrix structure evolution and nanoreinforcement distribution in mechanically milled and spark plasma sintered Al-SiC nanocomposites. Materials 7:6748–6767

    Article  CAS  Google Scholar 

  • Saheb N, Khan MS, Hakeem AS (2015) Effect of processing on mechanically alloyed and spark plasma sintered Al-Al2O3 nanocomposites. J Nanomater 2015:609824

    Article  Google Scholar 

  • Siddiqui MU, Arif AFM, Nouari S, Shahzeb Khan M (2017) Constitutive modeling of elastoplasticity in spark-plasma sintered metal matrix nanocomposites. Mater Sci Eng A 689:176–188

    Article  CAS  Google Scholar 

  • Singh LK, Maiti A, Maurya RS, Laha T (2016) Al alloy nanocomposite reinforced with physically functionalized carbon nanotubes synthesized via spark plasma sintering. Mater Manuf Process 31(6):733–738

    Article  CAS  Google Scholar 

  • Sweet GA, Brochu M, RL HJ, Donaldson IW, Bishop DP (2015) Consolidation of aluminum-based metal matrix composites via spark plasma sintering. Mater Sci Eng A 648:123–133

    Article  CAS  Google Scholar 

  • Tian W, Li S, Wang B, Chen X, Liu J, Yu M (2016) Graphene reinforced aluminum matrix composites prepared by spark plasma sintering. Int J Min Met Mater 23(6):723–729

    Article  CAS  Google Scholar 

  • Vintila R, Charest A, Drew RAL, Brochu M (2011) Synthesis and consolidation via spark plasma sintering of nanostructured Al-5356/B4C composite. Mater Sci Eng A 528:4395–4407

    Article  Google Scholar 

  • Wang L, Liu Y, Wu J, Zhang X (2017) Mechanical properties and friction behaviors of CNT/AlSi Mg composites produced by spark plasma sintering. Int J Min Met Mater 24(5):584–593

    Article  CAS  Google Scholar 

  • Wu J, Zhang H, Zhang Y, Wang X (2012) Mechanical and thermal properties of carbon nanotube/aluminum composites consolidated by spark plasma sintering. Mater Des 41:344–348

    Article  CAS  Google Scholar 

  • Xie G, Ohashi O, Chiba K, Yamaguchi N, Song M, Furuya K, Noda T (2003) Frequency effect on pulse electric current sintering process of pure aluminum powder. Mater Sci Eng A 359:384–390

    Article  Google Scholar 

  • Yang S, Yan X, Yang K, Fu Z (2016) Effect of the addition of nano-Al2O3 on the microstructure and mechanical properties of twinned Al0.4FeCrCoNi1.2Ti0.3 alloys. Vacuum 131:69–72

    Article  CAS  Google Scholar 

  • Zhang Y, Li J, Zhao L, Zhang H, Wang X (2014) Effect of metalloid silicon addition on densification, microstructure and thermal–physical properties of Al/diamond composites consolidated by spark plasma sintering. Mater Des 63:838–847

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Cavaliere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cavaliere, P., Sadeghi, B., Shamanian, M., Ashrafizadeh, F. (2019). Al-Based Nanocomposites Produced via Spark Plasma Sintering: Effect of Processing Route and Reinforcing Phases. In: Cavaliere, P. (eds) Spark Plasma Sintering of Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-05327-7_6

Download citation

Publish with us

Policies and ethics