Skip to main content

Nickel-Tungsten Composite-Like Microstructures Processed by Spark Plasma Sintering for Structural Applications

  • Chapter
  • First Online:
Spark Plasma Sintering of Materials

Abstract

In order to specifically improve their microstructures and enhance their mechanical properties, spark plasma sintering (SPS) has been employed to fabricate tungsten compacts and nickel-tungsten alloys, designated as Ni-xW where x corresponds to the weight percent of W. Pure dense α-W samples having relative densities above 94% and fine-grained microstructures have been processed by SPS at 1400 °C from a monomodal ultrafine-grained W powder. Taking advantage of the tungsten oxide melting which induces a fast densification and the cleaning effect that occurs during SPS, fully dense α-W compacts (relative density of 99%), having a multimodal microstructure, have then been successfully fabricated from a nanopowder obtained by self-propagating high-temperature synthesis. Another way to process dense W (>97%) with enhanced mechanical properties is to alloy W with Ni (4 wt%, Ni-96W) in order to activate its sintering. Besides, in the richer Ni part of Ni-W alloys, a wide range of full dense samples were obtained: Ni-10W, Ni-30W, Ni-50W, and Ni-65W. The mass density enhancement resulted from plastic flow of Ni at high temperature and enhanced diffusion processes. SPS is fast enough to avoid the formation of brittle intermetallic compounds usually observed during conventional sintering routes, and it also promotes W diffusion which leads to the formation of a Ni(W) solid solution matrix in which ultrafine-grained W powder are scattered, thus enhancing mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen BC, Maykuth DJ, Jaffee RI (1961) The recrystallization and ductile-brittle transition behaviour of tungsten-effect of impurities on polycrystals prepared from single crystals. J Inst Met 90:120–128

    CAS  Google Scholar 

  • Arshad K, Guoa W, Wang J et al (2015) Influence of vanadium precursor powder size on microstructures and properties of W–V alloy. Int J Refract Met Hard Mater 50:59–64

    Article  CAS  Google Scholar 

  • Autissier E, Richou M, Minier L et al (2014) Spark plasma sintering of pure and doped tungsten as plasma facing material. Phys Scr 159:014034

    Article  Google Scholar 

  • Bewlay BP, Briant CL (1995) The formation and the role of potassium bubbles in NSdoped tungsten. In: Lassner LB, Schubert WD, Lux B (eds) The chemistry of non-sag tungsten. Pergamon, Oxford, pp 137–159

    Chapter  Google Scholar 

  • Billard S, Fondère JP, Bacroix B, Dirras G (2006) Macroscopic and microscopic aspects of the deformation and fracture mechanisms of ultrafine-grained aluminum processed by hot isostatic pressing. Acta Mater 54:411–421

    Article  CAS  Google Scholar 

  • Chaim R, Shlayer A, Estournes C (2009) Densification of nanocrystalline Y2O3 ceramic powder by spark plasma sintering. J Eur Ceram Soc 29:91–98

    Article  CAS  Google Scholar 

  • Cury R, Joubert JM, Tusseau-Nenez S, Leroy E, Allavena-Valette A (2009) On the existence and the crystal structure of Ni4W, NiW and NiW2 compounds. Intermetallics 17:174–178

    Article  CAS  Google Scholar 

  • Deng S, Yuan T, Li R et al (2017) Spark plasma sintering of pure tungsten powder: densification kinetics and grain growth. Powder Technol 310:264–271

    Article  CAS  Google Scholar 

  • Deng S, Li R, Yuan T et al (2018) Direct current-enhanced densification kinetics during spark plasma sintering of tungsten powder. Scr Mater 143:25–29

    Article  CAS  Google Scholar 

  • Dine S, Aïd S, Ouaras K et al (2015) Synthesis of tungsten nanopowders: comparison of milling, SHS, MASHS and milling-induced chemical processes. Adv Powder Technol 26:1300–1305

    Article  CAS  Google Scholar 

  • Dine S, Kentheswaran V, Vrel D, Couzinié JP, Dirras G (2017) Synthesis of nanometric MoNbW alloy using self-propagating high-temperature synthesis. Adv Powder Technol 28:1739–1744

    Article  CAS  Google Scholar 

  • Dine S, Bernard E, Herlin Boime N et al (2018) SHS synthesis and SPS densification of Nanometric tungsten. Adv Eng Mater 20:1701138

    Article  Google Scholar 

  • Ding XY, Luo LM, Chen HY et al (2015) Fabrication of W–1 wt.% TiC composites by spark plasma sintering. Fusion Eng Des 92:29–34

    Article  CAS  Google Scholar 

  • Dirras G, Gubicza J, Couque H et al (2013) Mechanical behaviour and underlying deformation mechanisms in coarse- and ultrafine-grained Zn over a wide range of strain rates. Mater Sci Eng A 564:273–283

    Article  CAS  Google Scholar 

  • Dirras G, Tingaud D, Csiszár G, Gubicza J, Couque H, Mompiou F (2014) Characterization of bulk bimodal polycrystalline nickel deformed by direct impact loadings. Mater Sci Eng 601:48–57

    Article  CAS  Google Scholar 

  • Dudina DV, Bokhonov BB, Ukhina AV et al (2016) Reactivity of materials towards carbon of graphite foil during Spark Plasma Sintering: a case study using Ni–W powders. Mater Lett 168:62–67

    Article  CAS  Google Scholar 

  • Dutel GD (2013) Comportement Mécanique et Mécanismes de Déformation et d’Endommagement de polycristaux de Nickel mono- et bi-modaux élaborés par SPS. Dissertation, Université Paris 13 (France)

    Google Scholar 

  • Dutel GD, Tingaud D, Langlois P et al (2012) Nickel with multimodal grain size distribution achieved by SPS: microstructure and mechanical properties. J Mater Sci 47:7926–7931

    Article  CAS  Google Scholar 

  • Dutel GD, Langlois P, Tingaud D, Dirras G (2013) Room-temperature deformation micro-mechanisms of polycrystalline nickel processed by spark plasma sintering. Mater Charact 79:76–83

    Article  CAS  Google Scholar 

  • Dutel GD, Langlois P, Tingaud D, Vrel D, Dirras G (2017) Data on the influence of cold isostatic pre-compaction on mechanical properties of polycrystalline nickel sintered using Spark Plasma Sintering. Data Brief 11:61–67

    Article  Google Scholar 

  • El-Atwani O, Quach DV, Efe M, Cantwell PR et al (2011) Multimodal grain size distribution and high hardness in fine grained tungsten fabricated by spark plasma sintering. Mater Sci Eng A 528:5670–5677

    Article  CAS  Google Scholar 

  • Genç A, Coşkun S, Öveçoğlu ML (2010) Fabrication and properties of mechanically alloyed and Ni activated sintered W matrix composites reinforced with Y2O3 and TiB2 particles. Mater Charact 61:740–748

    Article  Google Scholar 

  • Genç A, Ayas E, Öveçoglu ML, Turan S (2012a) Fabrication of in situ Ni(W)–WC nano composites via mechanical alloying and spark plasma sintering. J Alloys Comp 542:97–104

    Article  Google Scholar 

  • Genç A, Öveçoglu ML, Baydogan M, Turan S (2012b) Fabrication and characterization of Ni–W solid solution alloys via mechanical alloying and pressureless sintering. Mater Des 42:495–509

    Article  Google Scholar 

  • Groza JR, Zavaliangos A (2000) Sintering activation by external electrical field. Mater Sci Eng A 287:171–177

    Article  Google Scholar 

  • Gupta VK, Yoon DH, Meyer HM III, Luo J (2007) Thin intergranular films and solid-state activated sintering in nickel-doped tungsten. Acta Mater 55:3131–3142

    Article  CAS  Google Scholar 

  • Hall EO (1951) The deformation and ageing of mild steel: III Discussion of results. Proc Phys Soc Lond B 64:747–753

    Article  Google Scholar 

  • Hayden HW, Brophy JH (1963) The activated sintering of tungsten with group VIII elements. J Electrochem Soc 110:805–810

    Article  CAS  Google Scholar 

  • Karpinos DM, Kravchenko AA, Pilipovskii YL, Tkachenko VG, Shamatov YM (1970) Hot pressing of tungsten and its pseudoalloys part I. Sov Powder Metall Met Ceram 9:287–291

    Article  Google Scholar 

  • Kaysser WA, Hofmann-Amtenbrink M, Pezew G (1987) Sintering’85. Plenum Press, New York

    Google Scholar 

  • Kim Y, Hong MH, Lee S et al (2006) The effect of yttrium oxide on the sintering behavior and hardness of tungsten. Met Mater Int 12:245–248

    Article  Google Scholar 

  • Lassner E, Schubert WD (1998) Tungsten: properties, chemistry, technology of the element, alloys and chemical compounds. Springer Science+Business Media, New York

    Google Scholar 

  • Lee D, Umer MA, Shin Y et al (2012) The effect of sintering conditions and ZrN volume fraction on the mechanical properties of spark plasma sintered W/ZrN composites. Mater Sci Eng A 552:481–485

    Article  CAS  Google Scholar 

  • Lee G, McKittrick J, Ivanov E et al (2016) Densification mechanism and mechanical properties of tungsten powder consolidated by spark plasma sintering. Int J Refract Met Hard Mater 61:22–29

    Article  CAS  Google Scholar 

  • Li B, Sun Z, Hou G, Ding F, Hu P, Yuan F (2017) The effects of alumina reinforcement and nickel activated sintering on nanosized tungsten matrix. J Alloys Compd 692:420–426

    Article  CAS  Google Scholar 

  • Liu R, Xie ZM, Fang QF et al (2016) Nanostructured yttria dispersion-strengthened tungsten synthesized by sol-gel method. J Alloys Compd 657:73–80

    Article  CAS  Google Scholar 

  • Lu L, Chen X, Huang X, Lu K (2009) Revealing the maximum strength in nanotwinned copper. Science 323:607–610

    Article  CAS  Google Scholar 

  • Ma J, Zhang J, Liu W, Shen Z (2013) Suppressing pore-boundary separation during spark plasma sintering of tungsten. J Nucl Mater 438:199–203

    Article  CAS  Google Scholar 

  • Marvel JM, Cantwell PR, Harmer MP (2015) The critical influence of carbon on the thermal stability of nanocrystalline Ni-W alloys. Scr Mater 96:45–48

    Article  CAS  Google Scholar 

  • Massalski TB (1990) Binary alloy phase diagrams, 2nd edn. ASM, Metals Park

    Google Scholar 

  • Maweja K, Phasha MJ, Choenyane LJ (2012) Thermal stability and magnetic saturation of annealed nickel–tungsten and tungsten milled powders. Int J Refract Met Hard Mater 30:78–84

    Article  CAS  Google Scholar 

  • Monge MA, Auger MA, Leguey T, Ortega Y, Bolzoni L, Gordo E, Pareja R (2009) Characterization of novel W alloys produced by HIP. J Nucl Mater 386:613–617

    Article  Google Scholar 

  • Morita K, Kim BN, Yoshida H (2015) Spectroscopic study of the discoloration of transparent MgAl2O4 spinel fabricated by spark-plasma-sintering (SPS) processing. Acta Mater 84:9–19

    Article  CAS  Google Scholar 

  • Mutoh Y, Ichikawa K, Nagata K et al (1995) Effect of rhenium addition on fracture toughness of tungsten at elevated temperatures. J Mater Sci 30:770–775

    Article  CAS  Google Scholar 

  • Pelloux RMN, Grant NJ (1960) No title. Trans Am Inst Min Metall Eng: 218–232

    Google Scholar 

  • Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel Res Int 175:25–28

    Google Scholar 

  • Rupert TJ, Trenkle JC, Schuh CA (2011) Enhanced solid solution effects on the strength of nanocrystalline alloys. Acta Mater 59:1619–1631

    Article  CAS  Google Scholar 

  • Sadat T (2015) Alliages Ni-W : de la mise en oeuvre par frittage flash aux micro-mécanismes de déformation et d’endommagement. Dissertation, Université Paris 13 (France)

    Google Scholar 

  • Sadat T, Dirras G, Tingaud D et al (2016a) Bulk Ni–W alloys with a composite-like microstructure processed by spark plasma sintering: microstructure and mechanical properties. Mater Des 89:1181–1190

    Article  CAS  Google Scholar 

  • Sadat T, Hocini A, Lilensten L et al (2016b) Data on the impact of increasing the W amount on the mass density and compressive properties of Ni–W alloys processed by spark plasma sintering. Data Brief 7:1405–1408

    Article  CAS  Google Scholar 

  • Singla G, Singh K, Pandey OP (2013) Structural and thermal properties of in-situ reduced WO3 to W powder. Powder Technol 237:9–13

    Article  CAS  Google Scholar 

  • Tiearney TC, Grant NJ (1982) Measurement of structural parameters important in creep of Ni-Mo and Ni-W solid solutions. Metall Trans A 13:1827–1836

    Article  Google Scholar 

  • Tingaud D, Jenei P, Krawczynska A, Mompiou F, Gubicza J, Dirras G (2015) Investigation of deformation micro-mechanisms in nickel consolidated from a bimodal powder by spark plasma sintering. Mater Charact 99:118–127

    Article  CAS  Google Scholar 

  • Vilémová M, Illková K, Lukáč F, Matějíček J, Klečka J, Leitner J (2018) Microstructure and phase stability of W-Cr alloy prepared by spark plasma sintering. Fus Eng Des 127:173–178

    Article  Google Scholar 

  • Wang Z, Yuan Y, Arshad K et al (2017) Effects of tantalum concentration on the microstructures and mechanical properties of tungsten-tantalum alloys. Fus Eng Des 125:496–502

    Article  CAS  Google Scholar 

  • Yao M, Zhangjian Z, Jun T, Ming L (2011) Fabrication of ultra-fine grain tungsten by combining spark plasma sintering with resistance sintering under ultra high pressure. Rare Metal Mater Eng 40:4–8

    Article  Google Scholar 

  • Yih SWH, Wang CT (1979) Tungsten, sources, metallurgy, properties and application. Plenum Press, New York

    Google Scholar 

  • Zhao M, Zhou Z, Ding Q et al (2015) Effect of rare earth elements on the consolidation behavior and microstructure of tungsten alloys. Int J Refract Met Hard Mater 48:19–23

    Article  CAS  Google Scholar 

  • Zhou Y, Sun QX, Xie ZM et al (2014) The microstructure and microhardness of W–5wt% Cr alloy fabricated by spark plasma sintering. J Alloys Compd 585:771–775

    Article  CAS  Google Scholar 

Download references

Acknowledgments

T. Sadat is grateful to École Doctorale Galilée and SREI of University Paris 13 (Grant n°: SMV/JRM/749-2014) for their financial support.

The authors are grateful to Mr. B. Villeroy for the technical support for SPS, to Dr. Housaer François for the sintering of Ni-W alloys by HP (UMET, CNRS UMR 8207 – Université de Lille), to Ms. Sarah Dine for the elaboration of shs-W, and also to Dr. P. Langlois for fruitful discussion and manuscript improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Tingaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tingaud, D., Sadat, T., Dirras, G. (2019). Nickel-Tungsten Composite-Like Microstructures Processed by Spark Plasma Sintering for Structural Applications. In: Cavaliere, P. (eds) Spark Plasma Sintering of Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-05327-7_21

Download citation

Publish with us

Policies and ethics