WAREC-1 – A Four-Limbed Robot with Advanced Locomotion and Manipulation Capabilities

Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 128)


This chapter introduces a novel four-limbed robot, WAREC-1, that has advanced locomotion and manipulation capability with versatile locomotion styles. At disaster sites, there are various types of environments through which a robot must traverse, such as rough terrain filled with rubbles, narrow places, stairs, and vertical ladders. WAREC-1 moves in hazardous environments by transitioning among various locomotion styles, such as bipedal/quadrupedal walking, crawling, and ladder climbing. WAREC-1 has identically structured limbs with 28 degrees of freedom (DoF) in total with 7-DoFs in each limb. The robot is 1,690 mm tall when standing on two limbs, and weighs 155 kg. We developed three types of actuator units with hollow structures to pass the wiring inside the joints of WAREC-1, which enables the robot to move on rubble piles by creeping on its stomach. Main contributions of our research are following five topics: (1) Development of a four-limbed robot, WAREC-1. (2) Simultaneous localization and mapping (SLAM) using laser range sensor array. (3) Teleoperation system using past image records to generate a third-person view. (4) High-power and low-energy hand. (5) Lightweight master system for telemanipulation and an assist control system for improving the maneuverability of master-slave systems.



This study was conducted with the support of Research Institute for Science and Engineering, Waseda University; Future Robotics Organization, Waseda University, and as a part of the humanoid project at the Humanoid Robotics Institute, Waseda University. This research was partially supported by SolidWorks Japan K. K; DYDEN Corporation; and KITO Corporation. This work was supported by Impulsing Paradigm Change through Disruptive Technologies (ImPACT) Tough Robotics Challenge program of Japan Science and Technology (JST) Agency.


  1. 1.
    Asama, H., Tadokoro, S., Setoya, H.: In: COCN (Council on Competitiveness-Nippon) Project on Robot Technology Development and Management for Disaster Response. IEEE Region 10 Humanitarian Technology Conference 2013 (2013)Google Scholar
  2. 2.
    Boston Dynamics (2018). Accessed 1 Mar 2018
  3. 3.
    Butterfas, J., Grebenstein, M., Liu, H.: DLR-hand II: next generation of a dextrous robot hand. In: Proceedings of 2001 IEEE International Conference on Robotics and Automation, vol. 1, pp. 109–114 (2001)Google Scholar
  4. 4.
    Council on Competitiveness Nippon (COCN).: Establishment plan for a disaster response robot center. The 2013 Report of Council on Competitiveness Nippon (COCN) (2013)Google Scholar
  5. 5.
    Darpa Robotics Challenge Finals (2015). Accessed 1 Mar 2018
  6. 6.
    Dellin, C.M., Strabala, K., Haynes, G.C., Stager, D., Srinivasa, S.S.: Guided manipulation planning at the darpa robotics challenge trials. Experimental Robotics, pp. 149–163. Springer, Cham (2016)CrossRefGoogle Scholar
  7. 7.
    Dexterous Hand - Shadow Robot Company (2018). Accesssed 1 Aug 2018
  8. 8.
    Endo, T., Kawasaki, H., Mouri, T., Ishigure, Y., Shimomura, H., Matsumura, M., Koketsu, K.: Five-fingered haptic interface robot: HIRO III. IEEE Trans. Haptics 4(1), 14–27 (2011)CrossRefGoogle Scholar
  9. 9.
    Fernando, C. L., Furukawa, M., Kurogi, T., Kamuro, S., Minamizawa, K., Tachi, S.: Design of TELESAR V for transferring bodily consciousness in telexistence. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5112–5118 (2012)Google Scholar
  10. 10.
    Fogel, D.B.: Evolutionary Computation, IEEE Press (1995)Google Scholar
  11. 11.
    Fujii, S., Inoue, K., Takubo, T., Mae, Y., Arai, T.: Ladder climbing control for limb mechanism robot ‘ASTERISK’. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3052–3057 (2008)Google Scholar
  12. 12.
    Fukuda, T., Hasegawa, Y., Doi, M., Asano, Y.: Multi-locomotion robot-energy-based motion control for dexterous brachiation. In: Proceedings of IEEE International Conference of Robotics and Biomimetics, pp. 4–9 (2005)Google Scholar
  13. 13.
    Hashimoto, K., Kondo, H., Lim, H.O., Takanishi, A.: Online walking pattern generation using FFT for humanoid robots. Motion and Operation Planning of Robotic Systems. Background and Practical Approaches, pp. 417–438. Springer International Publishing, Berlin (2015)Google Scholar
  14. 14.
    Hashimoto, K., Koizumi, A., Matsuzawa, T., Sun, X., Hamamoto, S., Teramachi, T., Sakai, N., Kimura, S., Takanishi, A.: Development of disaster response robot for extreme environments: –4th report: proposition of crawling motion for four-limbed robot–(in Japanese). In: Proceedings of 2016 JSME Annual Conference on Robotics and Mechatronics (Robomec), pp. 1A2–09b7 (2016)Google Scholar
  15. 15.
    Hirose, S., Tsukagoshi, H., Yoneda, K.: Normalized energy stability margin and its contour of walking vehicles on rough terrain. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 181–186 (2001)Google Scholar
  16. 16.
    Iida, H., Hozumi, H., Nakayama, R.: Developement of ladder climbing robot LCR-1. J. Robot. Machatron. 1, 311–316 (1989)CrossRefGoogle Scholar
  17. 17.
    Jacoff, A., Messina, E.: Urban search and rescue robot performance standards progress update. In: Proceedings of SPIE 6561, Unmanned Systems Technology IX, vol. 65611L, pp. 29–34. (2007)Google Scholar
  18. 18.
    Jacoff, A., Downs, A., Virts, A., Messina, E.: Stepfield pallets: repeatable terrain for evaluating robot mobility. In Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, pp. 29–34 (2008)Google Scholar
  19. 19.
    Kamezaki, M., Eto, T., Sato, R., Iwata, H.: A scale-gain adjustment method for master-slave system considering complexity, continuity, and time limitation in disaster response work. In: JSME Robotics and Mechatronics Conference, pp. 2A2–M02 (2018) (in Japanese)CrossRefGoogle Scholar
  20. 20.
    Karumanchi, S., Edelberg, K., Baldwin, I., Nash, J., Reid, J., Bergh, C., Leichty, J., Carpenter, K., Shekels, M., Gildner, M., Newill-Smith, D., Carlton, J., Koehler, J., Dobreva, T., Frost, M., Hebert, P., Borders, J., Ma, J., Douillard, B., Backes, P., Kennedy, B., Satzinger, B., Lau, C., Byl, K., Shankar, K., Burdick, J.: Team RoboSimian: semi-autonomous mobile manipulation at the 2015 DARPA robotics challenge finals. J. Field Robot. 34(2), 305–332 (2016)CrossRefGoogle Scholar
  21. 21.
    Kawasaki, H., Komatsu, T., Uchiyama, K.: Dexterous anthropomorphic robot hand with distributed tactile sensor: gifu hand II. IEEE/ASME Trans. Mechatron. 7(3), 296–303 (2002)CrossRefGoogle Scholar
  22. 22.
    Kitai, S., Toda, Y., Takesue, N., WADA, K., Kubota, N.: Intelligential control of variable sokuiki sensor array for environmental sensing (in Japanese). In: 2017 JSME Annual Conference on Robotics and Mechatronics (Robomec), pp. 1P1–Q06 (2017)CrossRefGoogle Scholar
  23. 23.
    Kitai, S., Toda, Y., Takesue, N., Wada, K., Kubota, N.: Intelligent control of variable ranging sensor array using multi-objective behavior coordination. Intelligent Robotics and Applications, ICIRA 2018. Lecture Notes in Computer Science, vol. 10984. Springer, Berlin (2018)Google Scholar
  24. 24.
    Kitani M., Asami, R., Sawai Y., Sato N., Fujiwara T., Endo T., Matuno F., Morita Y.: Tele-operation for legged robot by virtual marionette system (in Japanese). In: 2017 JSME Annual Conference on Robotics and Mechatronics (Robomec), pp. 1P1–Q03 (2017)CrossRefGoogle Scholar
  25. 25.
    Kojima, K., Karasawa, T., Kozuki, T., Kuroiwa, E., Yukizaki, S., Iwaishi, S., Ishikawa, T., Koyama, R., Noda, S., Sugai, F., Nozawa,S., Kakiuchi, Y., Okada, K., Inaba, M.: Development of life-sized high-power humanoid robot JAXON for real-world use. In: Proceedings of IEEE-RAS International Conference on Humanoid Robots, pp. 838–843 (2015)Google Scholar
  26. 26.
    Kondak, K, Huber, F., Schwarzbach, M., Laiacker, M., Sommer, D., Bejar, M., Ollero, A.: Aerial manipulation robot composed of anautonomous helicopter and a 7 degrees of freedom industrial manipulator. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2107–2112 (2014)Google Scholar
  27. 27.
    Lewis, M., Wang, J., Hughes, S., Liu, X.: Experiments with attitude: attitude displays for teleoperation. In: 2003 IEEE International Conference on Systems, Man and Cybernetics, pp. 1345–1349 (2003)Google Scholar
  28. 28.
    Lim, J., Lee, I., Shim, I., Jung, H., Joe, H.M., Bae, H., Sim, O., Oh, J., Jung, T., Shin, S., Joo, K., Kim, M., Lee, K., Bok, Y., Choi, D.G., Cho, B., Kim, S., Heo, J., Kim, I., Lee, J., Kwon, I.S., Oh, J.H.: Robot system of DRC-HUBO+ and control strategy of team KAIST in DARPA robotics challenge finals. J. Field Robot. 34(4), 802–829 (2017)CrossRefGoogle Scholar
  29. 29.
    Maeda, K., Osuka, K.: Error analysis of FST for accuracy improvement. In: Proceedings of SICE Annual Conference, pp. 1698–1700 (2010)Google Scholar
  30. 30.
    Marion, P., Fallon, M., Deits, R., Valenzuela, A., D’Arpino, C.P., Izatt, G., Manuelli, L., Antone, M., Dai, H., Koolen, T., Carter, J., Kuindersma, S., Tedrake, R.: Director: a user interface designed for robot operation with shared autonomy. J. Field Robot. 34(2), 262–280 (2017)CrossRefGoogle Scholar
  31. 31.
    Matsumoto, Y., Namiki, A., Negishi, K.: Development of a safe and operable teleoperated robot system controlled with a lightweight and high-operable master device. In: Proceedings of IEEE/SICE International Symposium System Integration, pp. 552–557 (2015)Google Scholar
  32. 32.
    Matsuzawa, T., Koizumi, A., Hashimoto, K., Sun, X., Hamamoto, S., Teramachi, T., Kimura, S., Sakai, N., Takanishi, A.: Crawling gait for four-limbed robot and simulation on uneven terrain. In: Proceedings of the 16th IEEE-RAS International Conference on Humanoid Robots, pp. 1270–1275 (2016)Google Scholar
  33. 33.
    Minamizawa, K., Fukamachi, S., Kajimoto, H., Kawakami, N., Tachi, S.: Gravity grabber: wearable haptic display to present virtual mass sensation. In: ACM SIGGRAPH (2007)Google Scholar
  34. 34.
    Mouri, T., Kawasaki, H., Yoshikawa, K., Takai, J., Ito, S.: Anthropomorphic Robot Hand: Gifu Hand III. In: Proceedings of the 2002 International Conference on Control, Automation and Systems, pp. 1288–1293 (2002)Google Scholar
  35. 35.
    Mouri, T., Kawasaki, H.: Humanoid robots human-like machines. A Novel Anthropomorphic Robot Hand and its Master Slave System, pp. 29–42. I-Tech Education and Publishing (2007)Google Scholar
  36. 36.
    Nakano, E., Nagasaka, S.: Leg-wheel robot: a futuristic mobile platform for forestry industry. In: Proceedings of IEEE/Tsukuba International Workshop on Advanced Robotics, pp. 109–112 (1993)Google Scholar
  37. 37.
    Namiki, A., Matsumoto, Y., Liu, Y., Maruyama, T.: Vision-based predictive assist control on master-slave systems. In: Proceedings of IEEE International Conference Robotics and Automation, pp. 5357–5362 (2017)Google Scholar
  38. 38.
    Negishi, K., Liu, Y., Maruyama, T., Matsumoto, Y., Namiki, A.: Operation assistance using visual feedback with considering human intention on master-slave systems. In: Proceedings of IEEE International Conference Robotics and Biomimetics, pp. 2169–2174 (2016)Google Scholar
  39. 39.
    Niemeyer, G., Preusche, C., Hirzinger, G.: Telerobotics. Springer Handbook of Robotics, pp. 741–757. Springer, Berlin (2008)CrossRefGoogle Scholar
  40. 40.
    No Electricity Locking System — Adamant Namiki Precision Jewel Co., Ltd (2018). Accessed 1 Aug 2018
  41. 41.
    Ohmichi, T., Ibe, T.: Development of vehicle with legs and wheels. J. Robot. Soc. Jpn. 2(3), 244–251 (1984)CrossRefGoogle Scholar
  42. 42.
    Passenberg, C., Peer, A., Buss, M.: A survey of environment-, operator-, and task-adapted controllers for teleoperation systems. Mechatronics 20(7), 787–801 (2010)CrossRefGoogle Scholar
  43. 43.
    Pounds, P., Bersak, D., Dollar, A.: Grasping from the air: hovering capture and load stability. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2491–2498 (2011)Google Scholar
  44. 44.
    Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3(3.2), p. 5 (2009)Google Scholar
  45. 45.
    Ramirez Rebollo, D.R., Ponce, P., Molina, A.: From 3 fingers to 5 fingers dexterous hands. Adv. Robot. 31(19–20), 1051–1070 (2017)CrossRefGoogle Scholar
  46. 46.
    Rechenberg, I.: Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution. FrommannHolzboog Verlag, Stuttgart (1973)Google Scholar
  47. 47.
    Rosenberg, L.B.: Virtual fixtures: perceptual tools for telerobotic manipulation. In: Virtual Reality Annual International Symposium, pp. 76–82. IEEE (1993)Google Scholar
  48. 48.
    Rebula, J.R., Neuhaus, P.D., Bonnlander, B.V., Johnson, M.J., Pratt,J.E.: A controller for the littledog quadruped walking on rough terrain. In: 2007 IEEE International Conference on Robotics and Automation (ICRA), pp. 1467–1473 (2007)Google Scholar
  49. 49.
    Sasaki, Y., Tanabe, R., Takemura, H.: Probabilistic 3D sound source mapping using moving microphone array. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1293–1298 (2016)Google Scholar
  50. 50.
    Schwarz, M., Rodehutskors, T., Droeschel, D., Beul, M., Schreiber, M., Araslanov, N., Ivanov, I., Lenz, C., Razlaw, J., Schüller, S., Schwarz, D., Topalidou-Kyniazopoulou, A., Behnke, S.: NimbRo rescue: solving disaster-response tasks with the mobile manipulation robot momaro. J. Field Robot. 34(2), 400–425 (2016)CrossRefGoogle Scholar
  51. 51.
    Schwefel, H.-P.: Kybernetische evolution als strategie der experimentellen forschung in der strmungstechnik. Diploma thesis, Technical University of Berlin (1965)Google Scholar
  52. 52.
    Shirasaka, S., Machida, T., Igarashi, H., Suzuki, S., Kakikura, M.: Leg selectable interface for walking robots on irregular terrain. In: 2006 SICE-ICASE International Joint Conference, pp. 4780–4785 (2006)Google Scholar
  53. 53.
    Shiroma, N., Sato, N., Chiu, Y., Matsuno, F.,: Study on effective camera images for mobile robot teleoperation. In: 2004 IEEE International Workshop on Robot and Human Interactive Communication (RO-MAN), pp. 107–112 (2004)Google Scholar
  54. 54.
    Start Production Faster - Robotiq (2018). Accessed 1 Aug 2018
  55. 55.
    Stentz, A., Herman, H., Kelly, A., Meyhofer, E., Haynes, G.C., Stager, D., Zajac, B., Bagnell, J.A., Brindza, J., Dellin, C., George, M., Gonzalez-Mora, J., Hyde, S., Jones, M., Laverne, M., Likhachev, M., Lister, L., Powers, M., Ramos, O., Ray, J., Rice, D., Scheifflee, J., Sidki, R., Srinivasa, S., Strabala, K., Tardif, J.P., Valois, J.S., Weghe, J.M.V., Wagner, M., Wellington, C.: CHIMP, the CMU highly intelligent mobile platform. J. Field Robot. 32(2), 209–228 (2015)CrossRefGoogle Scholar
  56. 56.
    Sugimoto, M., Kagotani, G., Nii, H., Shiroma, N., Inami, M., Matsuno, F.: Time follower vision: a teleoperation interface with past images. IEEE Comput. Graph. Appl. 25(1), 54–63 (2005)CrossRefGoogle Scholar
  57. 57.
    Sun, X., Hashimoto, K., Hamamoto, S., Koizumi, A., Matsuzawa, T.,Teramachi, T., Takanishi, A.: Trajectory generation for ladder climbing motion with separated path and time planning. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5782–5788 (2016)Google Scholar
  58. 58.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)zbMATHGoogle Scholar
  59. 59.
    Tsagarakis, N.G., Caldwell, D.G., Negrello, F., Choi, W., Baccelliere, L., Loc, V., Noorden, J., Muratore, L., Margan, A., Cardellino, A., Natale, L., Mingo Homan, E., Dallali, H., Kashiri, N., Malzahn, J., Lee, J., Kryczka, P., Kanoulas, D., Garabini, M., Catalano, M., Ferrati, M., Varricchio, V., Pallottino, L., Pavan, C., Bicchi, A., Settimi, A., Rocchi, A., Ajoudani, A.: WALK-MAN: a high-performance humanoid platform for realistic environments. J. Field Robot. 34(7), 1225–1259 (2017)CrossRefGoogle Scholar
  60. 60.
    Vaillant, J., Kheddar, A., Audren, H., Keith, F., Brossette, S., Escande, A., Kaneko, K., Morisawa, M., Gergondet, P., Yoshida, E., Kajita, S., Kenehiro, F.: Multi-contact vertical ladder climbing with a HRP-2 humanoid. Auton. Robot. 40(3), 561–580 (2016)CrossRefGoogle Scholar
  61. 61.
    Yamauchi, B.: PackBot: a versatile platform for military robotics. In: Defense and Security, International Society for Optics and Photonics, pp. 228–237 (2004)Google Scholar
  62. 62.
    Yoneda, H., Sekiyama, K., Hasegawa, Y., Fukuda, T.: Vertical ladder climbing motion with posture control for multi-locomotion robot. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3579–3684 (2008)Google Scholar
  63. 63.
    Yoshida, T., Nagatani, K., Tadokoro, S., Nishimura, T., Koyanagi, E.: Improvements to the rescue robot quince toward future indoor surveillance missions in the fukushima daiichi nuclear power plant. Field and Service Robotics, vol. 92, pp. 19–32. Springer, Berlin (2013)CrossRefGoogle Scholar
  64. 64.
    Yoshiike, T., Kuroda, M., Ujino, R., Kaneko, H., Higuchi, H., Iwasaki, S., Kanemoto, Y., Asatani, M., Koshiishi, T.: Development of experimental legged robot for inspection and disaster response in plants. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4869–4876 (2017)Google Scholar
  65. 65.
    Yoshikawa, T.: Analysis and control of robot manipulators with redundancy. In: Proceedings of Robotics Research: The First International Symposium, pp. 735–747 (1984)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Meiji UniversityKawasaki-shiJapan
  2. 2.Waseda UniversityShinjuku-kuJapan
  3. 3.Kyoto UniversityNishikyo-kuJapan
  4. 4.Nagoya Institute of TechnologySyowa-kuJapan
  5. 5.Tokyo Metropolitan UniversityHinoJapan
  6. 6.Okayama UniversityKita, OkayamaJapan
  7. 7.Gifu UniversityGifuJapan
  8. 8.Chiba UniversityInage-kuJapan
  9. 9.Waseda UniversityShinjuku-kuJapan
  10. 10.Tohoku UniversityAoba-kuJapan

Personalised recommendations