Convex Programming

  • Mohammad Fathi
  • Hassan Bevrani


One common form of optimization is convex programming that has a wide range of applications in all fields of engineering, in particular electrical engineering. This kind of programming is characterized by some conditions and properties in the construction of functions used in the objective and constraints functions. One major advantage of convex programming is that any local optimal point is also global, which brings forward a great step in the algorithms to solve convex optimization problems. This chapter first defines convex sets and convex functions, using which the definitions of convex and geometric programming problems are determined. To clarify these definitions, appropriate application examples in electrical engineering are given accordingly.


Convex programming Convexity CVX Geometric programming Quasi-convex 


  1. 1.
    S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge, Cambridge University Press, 2004)CrossRefGoogle Scholar
  2. 2.
    H. Hindi, A tutorial on convex optimization ii: duality and interior point methods, in Proceedings of the American Control Conference, 2006Google Scholar
  3. 3.
    H. Hindi, A tutorial on convex optimization, in Proceedings of the American Control Conference, 2004Google Scholar
  4. 4.
    Y. Nesterov, A. Nemirovsky, Interior Point Polynomial Algorithms in Convex Programming (SIAM, Philadelphia, 1994)CrossRefGoogle Scholar
  5. 5.
    M.S. Bazaraa, J.J. Jarvis, H.D. Sherali, Linear Programming and Network Flows (Wiley, Hoboken, 2009)CrossRefGoogle Scholar
  6. 6.
    S. Boyda, S.J. Kim, L. Vandenberghe, A. Hassibi, A tutorial on geometric programming. Optim. Eng. 8(1), 67–127 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    K.O. Kortanek, X. Xu, Y. Ye, An infeasible interior-point algorithm for solving primal and dual geometric programs. Math. Program. 76(1), 155–181 (1996)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Z.-Q. Luo, W. Yu, An introduction to convex optimization for communications and signal processing. IEEE J. Sel. Areas Commun. 24, 1426–1438 (2006)CrossRefGoogle Scholar
  9. 9.
    J.A. Taylor, Convex Optimization of Power Systems (Cambridge University Press, Cambridge, 2015)CrossRefGoogle Scholar
  10. 10.
    M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.1 (2014).
  11. 11.
    GNU linear programming kit, Version 4.45.
  12. 12.
    MOSEK, Mosek optimization toolbox (2002).
  13. 13.
    W. Stanczak, M. Wiczanowski, H. Boche, Fundamentals of Resource Allocation in Wireless Networks: Theory and Algorithms (Springer, Berlin, 2008)CrossRefGoogle Scholar
  14. 14.
    S. Kandukuri, S. Boyd, Optimal power control in interference limited fading wireless channels with outage probability specifications. IEEE Trans. Wirel. Commun. 1, 46–55 (2002)CrossRefGoogle Scholar
  15. 15.
    H. Bevrani, B. Francoist, T. Ise, Microgrid Dynamics and Control (Wiley, Hoboken, 2017)CrossRefGoogle Scholar
  16. 16.
    H. Bevrani, M. Watanabe, Y. Mitani, Power System Monitoring and Control (IEEE-Wiley, Hoboken, 2014)Google Scholar
  17. 17.
    M. Fathi, H. Bevrani, Regulating power management in interconnected microgrids. J. Renew. Sust. Energy 9, 055502 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Fathi, H. Bevrani, Adaptive energy consumption scheduling for connected microgrids under demand uncertainty. IEEE Trans. Power Deliv. 28, 1576–1583 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Fathi, H. Bevrani, Statistical cooperative power dispatching in interconnected microgrids. IEEE Trans. Sust. Energy 4, 586–593 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohammad Fathi
    • 1
  • Hassan Bevrani
    • 1
  1. 1.University of KurdistanKurdistanIran

Personalised recommendations