Advertisement

Introduction

  • Mohammad Fathi
  • Hassan Bevrani
Chapter

Abstract

Over the years, making the best decision among a number of possible choices has been a challenging issue. The issue arises from the complexity of the decision criteria and the extent of possible choices. Optimization is the knowledge of decision-making. Scientists and engineers have always tried to develop techniques and tools to overcome the complexity of optimization.

Keywords

Optimization in electrical engineering Signal processing Circuit design Resource allocation Power dispatching Load-frequency control Microgrid planning 

References

  1. 1.
    D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming (Springer, Berlin, 2016)zbMATHGoogle Scholar
  2. 2.
    M.S. Bazaraa, J.J. Jarvis, H.D. Sherali, Linear Programming and Network Flows (Wiley, Hoboken, 2009)zbMATHGoogle Scholar
  3. 3.
    D.P. Bertsekas, Nonlinear Programming (Athena Scientific, Belmont, 1999)Google Scholar
  4. 4.
    L.A. Wolsey, Integer Programming (Wiley, Hoboken 1998)zbMATHGoogle Scholar
  5. 5.
    H.M. Salkin, K. Mathur, Foundation of Integer Programming (North-Holland, New York, 1989)zbMATHGoogle Scholar
  6. 6.
    D.P. Bertsekas, E. Nedic, A. Ozdaglar, Convex Analysis and Optimization (Athena Scientific, Nashua, 2003)Google Scholar
  7. 7.
    S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)zbMATHGoogle Scholar
  8. 8.
    R. Duffin, E. Peterson, C.Zener, Geometric Programming–Theory and Application (Wiley, New York, 1967)zbMATHGoogle Scholar
  9. 9.
    A.I. Galushkin, Neural Networks Theory (Springer, New York, 2007)zbMATHGoogle Scholar
  10. 10.
    J. Kennedy, R. Eberhart, Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks, vol. 4 (IEEE, Perth, 1995), pp. 1942–1948Google Scholar
  11. 11.
    F. Rothlauf, Representations for Genetic and Evolutionary Algorithms (Springer, New York, 2006)zbMATHGoogle Scholar
  12. 12.
    S. Boyda, S.J. Kim, L. Vandenberghe, A. Hassibi, A tutorial on geometric programming. Optim. Eng. 8(1), 67–127 (2007)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Y. Nesterov, A. Nemirovsky, Interior Point Polynomial Algorithms in Convex Programming (SIAM, Philadelphia, 1994)Google Scholar
  14. 14.
    K.O. Kortanek, X. Xu, Y. Ye, An infeasible interior-point algorithm for solving primal and dual geometric programs. Math. Program. 76(1), 155–181 (1996)MathSciNetzbMATHGoogle Scholar
  15. 15.
    M. Grant, S. Boyd, CVX: MATLAB software for disciplined convex programming, version 2.1. (2014) http://cvxr.com/cvx
  16. 16.
    MOSEK, Mosek optimization toolbox. (2002). www.mosek.com
  17. 17.
    GNU linear programming kit, version 4.45. http://www.gnu.org/software/glpk
  18. 18.
    S.S. Rao, Engineering Optimization: Theory and Practice (Wiley, Hoboken, 2009)Google Scholar
  19. 19.
    M. Baker, Nonlinear Optimization in Electrical Engineering with Applications in MATLAB (IET, Hertfordshire, 2013)Google Scholar
  20. 20.
    J.A. Taylor, Convex Optimization of Power Systems (Cambridge University Press, Cambridge, 2015)Google Scholar
  21. 21.
    L. Rabiner, Linear program design of finite impulse response (FIR) digital filters. IEEE Trans. Audio Electroacoust. 20(4), 280–288 (1972)Google Scholar
  22. 22.
    S.-P. Wu, S. Boyd, L. Vandenberghe, FIR filter design via spectral factorization and convex optimization. Applied and Computational Control, Signals, and Circuits (Springer, Berlin, 1999), pp. 215–245Google Scholar
  23. 23.
    H. Lebret, S. Boyd, Antenna array pattern synthesis via convex optimization. IEEE Trans. Signal Process. 45(3), 526–532 (1997)Google Scholar
  24. 24.
    H. Trevor, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, New York, 2009)zbMATHGoogle Scholar
  25. 25.
    L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms. Phys. D: Nonlinear Phenom. 60(1–4), 259–268 (1992)MathSciNetzbMATHGoogle Scholar
  26. 26.
    W. Zhao, R. Chellappa, P. J. Phillips, A. Rosenfeld, Face recognition: a literature survey. ACM Comput. Surv. 35(4), 399–458 (2003)Google Scholar
  27. 27.
    Y. Gong, Speech recognition in noisy environments: a survey. Speech Commun. 16(3), 261–291 (1995)Google Scholar
  28. 28.
    P. Stoica, T. McKelvey, J. Mari, MA estimation in polynomial time. IEEE Trans. Signal Process. 48(7), 1999–2012 (2000)zbMATHGoogle Scholar
  29. 29.
    B. Dumitrescu, I. Tabus, P. Stoica, On the parameterization of positive real sequences and MA parameter estimation. IEEE Trans. Signal Process. 49(11), 2630–2639 (2001)MathSciNetzbMATHGoogle Scholar
  30. 30.
    T.N. Davidson, Z.-Q. Luo, K.M. Wong, Design of orthogonal pulse shapes for communications via semidefinite programming. IEEE Trans. Signal Process. 48(5), 1433–1445 (2000)Google Scholar
  31. 31.
    A. Dua, K. Medepalli, A.J. Paulraj, Receive antenna selection in MIMO systems using convex optimization. IEEE Trans. Wirel. Commun. 5(9), 2353–2357 (2006)Google Scholar
  32. 32.
    G. Sell, M. Slaney, Solving demodulation as an optimization problem. IEEE Trans. Audio Speech Lang. Process. 18(8), 2051–2066 (2010)Google Scholar
  33. 33.
    S.L. Sabat, K.S. Kumar, S.K. Udgata, Differential evolution and swarm intelligence techniques for analog circuit synthesis. Proceeding of the World Congress on Nature and Biologically Inspired Computing (IEEE, Coimbatore, 2009), pp. 469–474Google Scholar
  34. 34.
    G. Alpaydin, S. Balkir, G. Dundar, An evolutionary approach to automatic synthesis of high-performance analog integrated circuits. IEEE Trans. Evol. Comput. 7(3), 240–252 (2003)Google Scholar
  35. 35.
    B. Liu, G. Gielen, F.V. Fernández, Automated design of analog and high-frequency circuits. Proceeding of the Fundamentals of Optimization Techniques in Analog IC Sizing. Studies in Computational Intelligence (Springer, Berlin, 2014)Google Scholar
  36. 36.
    S. Boyda, S.J. Kim, D. Patil, M. Horowitz, Digital circuit optimization via geometric programming. Oper. Res. 53(6), 899–932 (2005)MathSciNetzbMATHGoogle Scholar
  37. 37.
    E. Tlelo-Cuautle, I. Guerra-Gómez, M.A. Duarte-Villaseñor, Applications of evolutionary algorithms in the design automation of analog integrated circuits. J. Appl. Sci. 10(17), 1859–1872 (2010)Google Scholar
  38. 38.
    M. Fakhfakh, Y. Cooren, A. Sallem, M. Loulou, P. Siarry, Analog circuit design optimization through the particle swarm optimization technique. Analog Integr. Circuits Signal Process. 63(1), 71–82 (2010)Google Scholar
  39. 39.
    P.P. Kumar, K. Duraiswamy, A.J. Anand, An optimized device sizing of analog circuits using genetic algorithm. Eur. J. Sci. Res. 69(3), 441–448 (2012)Google Scholar
  40. 40.
    D. Nam, Y.D. Seo, L.J. Park, C.H. Park, B. Kim, Parameter optimization of an on-chip voltage reference circuit using evolutionary programming. IEEE Trans. Evol. Comput. 5(4), 414–421 (2001)Google Scholar
  41. 41.
    P. Nintanavongsa, U. Muncuk, D.R. Lewis, K.R. Chowdhury, Design optimization and implementation for RF energy harvesting circuits. IEEE J. Emerging Sel. Top. Circuits Syst. 2(1), 24–33 (2012)Google Scholar
  42. 42.
    D. Bertsekas, R.G. Gallager, Data Networks (Prentice Hall, New Jersey, 1991)zbMATHGoogle Scholar
  43. 43.
    Y. Su, F. Fu, S. Guo, Resource allocation in communications and computing. Can. J. Electr. Comput. Eng. 2013, 328395 (2013)MathSciNetGoogle Scholar
  44. 44.
    A. Ephremides, S. Verdu, Control and optimization methods in communication network problems. IEEE Trans. Autom. Control 9(1), 930–942 (1989)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Z. Han, K.J.R. Liu, Resource Allocation for Wireless Networks: Basics, Techniques, and Applications (Cambridge University Press, Cambridge, 2008)Google Scholar
  46. 46.
    M. Fathi, H. Taheri, M. Mehrjoo, Cross-layer joint rate control and scheduling for OFDMA wireless mesh networks. IEEE Trans. Veh. Technol. 59(8), 3933–3941 (2010)Google Scholar
  47. 47.
    M. Fathi, H. Taheri, M. Mehrjoo, Utility maximisation in channel-aware and queue-aware orthogonal frequency division multiple access scheduling based on arrival rate control. IET Commun. 6(2), 235–241 (2012)MathSciNetzbMATHGoogle Scholar
  48. 48.
    F. Kelly, Charging and rate control for elastic traffic. Eur. Trans. Telecommun. 8(1), 33–37 (1997)Google Scholar
  49. 49.
    W. Stanczak, M. Wiczanowski, H. Boche, Fundamentals of Resource Allocation in Wireless Networks: Theory and Algorithms (Springer, Berlin, 2008)zbMATHGoogle Scholar
  50. 50.
    S. Shakkottai, T.S. Rappaport, P.C. Karlsson, Cross-layer design for wireless networks. IEEE Commun. Mag. 41(10), 74–80 (2003)Google Scholar
  51. 51.
    M. Chiang, S.H. Low, A.R. Calderbank, J.C. Doyle, Layering as optimization decomposition: a mathematical theory of network architectures. Proc. IEEE 95(1), 255–312 (2007)Google Scholar
  52. 52.
    M. Fathi, E. Karipidis, Distributed allocation of subcarrier, power and bit-level in multicell orthogonal frequency-division multiple-access networks. IET Commun. 8(6), 781–788 (2014)Google Scholar
  53. 53.
    S. Sharifi, M. Fathi, Underlay device to device communication with imperfect interference channel knowledge. Wirel. Pers. Commun. 101(2), 619–634 (2018)Google Scholar
  54. 54.
    M. Fathi, V. Maihami, Operational state scheduling of relay nodes in two-tiered wireless sensor networks. IEEE Syst. J. 9(3), 686–693 (2015)Google Scholar
  55. 55.
    B. Chowdhury, S. Rahman, A review of recent advances in economic dispatch. IEEE Trans. Power Syst. 5(4), 1248–1259 (1990)MathSciNetGoogle Scholar
  56. 56.
    M. Huneault, F.D. Galiana, A survey of the optimal power flow literature. IEEE Trans. Power Syst. 6(2), 762–770 (1991)Google Scholar
  57. 57.
    J. Zhu, Optimization of Power System Operation (Wiley-IEEE Press, Hoboken, 2015)Google Scholar
  58. 58.
    M.A. Abido, Environmental/economic power dispatch using multiobjective evolutionary algorithms. IEEE Trans. Power Syst. 18(4), 1529–1537 (2003)Google Scholar
  59. 59.
    M.R. AlRashidi, M.E. El-Hawary, A survey of particle swarm optimization applications in electric power systems. IEEE Trans. Evol. Comput. 13(4), 913–918 (2009)Google Scholar
  60. 60.
    M. Fathi, H. Bevrani, Adaptive energy consumption scheduling for connected microgrids under demand uncertainty. IEEE Trans. Power Deliv. 28, 1576–1583 (2013)Google Scholar
  61. 61.
    M. Fathi, H. Bevrani, Statistical cooperative power dispatching in interconnected microgrids. IEEE Trans. Sustain. Energy 4, 586–593 (2013)Google Scholar
  62. 62.
    S. Frank, I. Steponavice, S. Rebennack, Optimal power flow: a bibliographic survey I. Energy Syst. 3(3), 221–258 (2012)Google Scholar
  63. 63.
    S. Frank, I. Steponavice, S. Rebennack, Optimal power flow: a bibliographic survey II. Energy Syst. 3(3), 259–289 (2012)Google Scholar
  64. 64.
    O. Gandhi, C.D. Rodríguez-Gallegos, D. Srinivasan, Review of optimization of power dispatch in renewable energy system. Proceedings of the IEEE Innovative Smart Grid Technologies (IEEE, Melbourne, 2016), pp. 250–257Google Scholar
  65. 65.
    M. Fathi, H. Bevrani, Regulating power management in interconnected microgrids. J. Renew. Sustain. Energy 9(5), 055502 (2017)Google Scholar
  66. 66.
    M. Fathi, A spectrum allocation scheme between smart grid communication and neighbor communication networks. IEEE Syst. J. 12(1), 465–472 (2018)Google Scholar
  67. 67.
    P. Hajimirzaee, M. Fathi, N.N. Qader, Quality of service aware traffic scheduling in wireless smart grid communication. Telecommun. Syst. 66(2), 233–242 (2017)Google Scholar
  68. 68.
    H. Bevrani, Robust Power System Frequency Control (Springer, Switzerland, 2014)zbMATHGoogle Scholar
  69. 69.
    H. Bevrani, T. Hiyama, Intelligent Automatic Generation Control (CRC Press, New York, 2011)Google Scholar
  70. 70.
    H. Bevrani, B. Francois, T. Ise, Microgrid Dynamics and Control (Wiley, Hoboken, 2017)Google Scholar
  71. 71.
    H. Bevrani, S. Shokoohi, An intelligent droop control for simultaneous voltage and frequency regulation in islanded microgrids. IEEE Trans. Smart Grid 4(3), 1505–1513 (2013)Google Scholar
  72. 72.
    H. Bevrani, M. Watanabe, Y. Mitani, Power System Monitoring and Control (IEEE-Wiley Press, Hoboken, 2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohammad Fathi
    • 1
  • Hassan Bevrani
    • 1
  1. 1.University of KurdistanKurdistanIran

Personalised recommendations