Skip to main content

Sphere Construction on the FCC Grid Interpreted as Layered Hexagonal Grids in 3D

  • Conference paper
  • First Online:
Combinatorial Image Analysis (IWCIA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 11255))

Included in the following conference series:

Abstract

In this paper, we propose an algorithm to build discrete spherical shell having integer center and real-valued inner and outer radii on the face-centered cubic (FCC) grid. We address the problem by mapping it to a 2D scenario and building the shell layer by layer on hexagonal grids with additive manufacturing in mind. The layered hexagonal grids get shifted according to need as we move from one layer to another and forms the FCC grid in 3D. However, we restrict our computation strictly to 2D in order to utilize symmetry and simplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andres, E.: Discrete circles, rings and spheres. Comput. Graph. 18(5), 695ā€“706 (1994)

    ArticleĀ  Google ScholarĀ 

  2. Andres, E.: Shear based bijective digital rotation in hexagonal grids. Pattern Recogn. Lett. (2018, submitted)

    Google ScholarĀ 

  3. Andres, E., Jacob, M.: The discrete analytical hyperspheres. IEEE Trans. Visual. Comput. Graph. 3, 75ā€“86 (1997)

    ArticleĀ  Google ScholarĀ 

  4. Andres, E., Biswas, R., Bhowmick, P.: Digital primitives defined by weighted focal set. In: 20th IAPR International Conference on Discrete Geometry for Computer Imagery, pp. 388ā€“398 (2017)

    ChapterĀ  Google ScholarĀ 

  5. Brimkov, V.E., Barneva, R.P., Brimkov, B.: Connected distance-based rasterization of objects in arbitrary dimension. Graph. Models 73, 323ā€“334 (2011)

    ArticleĀ  Google ScholarĀ 

  6. Conway, J., Sloane, N., Bannai, E.: Sphere Packings, Lattices, and Groups (Sect. 6.3). Springer, New York (1999). https://doi.org/10.1007/978-1-4757-2249-9

    BookĀ  Google ScholarĀ 

  7. Gao, W., et al.: The status, challenges, and future of additive manufacturing in engineering. Comput.-Aided Des. 69, 65ā€“89 (2015)

    ArticleĀ  Google ScholarĀ 

  8. HƤllgren, S., Pejryd, L., Ekengren, J.: (Re)design for additive manufacturing. Procedia CIRP 50, 246ā€“251 (2016)

    ArticleĀ  Google ScholarĀ 

  9. Hiller, J., Lipson, H.: Design and analysis of digital materials for physical 3D voxel printing. Rapid Prototyping J. 15, 137ā€“149 (2009)

    ArticleĀ  Google ScholarĀ 

  10. Hon, K.K.B.: Digital additive manufacturing: from rapid prototyping to rapid manufacturing. In: Hinduja, S., Fan, K.C. (eds.) 35th International MATADOR Conference, pp. 337ā€“340. Springer, London (2007). https://doi.org/10.1007/978-1-84628-988-0_76

    ChapterĀ  Google ScholarĀ 

  11. Nagy, B.: A symmetric coordinate frame for hexagonal networks. In: Theoretical Computer Science Information Society, pp. 193ā€“196 (2004)

    Google ScholarĀ 

  12. Nagy, B., Strand, R.: Approximating Euclidean circles by neighbourhood sequences in a hexagonal grid. Theor. Comput. Sci. 412, 1364ā€“1377 (2011)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  13. SĆ”, A.M., Echavarria, K.R., Pietroni, N., Cignoni, P.: State of the art on functional fabrication. In: Eurographics Workshop on Graphics for Digital Fabrication (2016)

    Google ScholarĀ 

  14. Salonitis, K., Zarban, S.A.: Redesign optimization for manufacturing using additive layer techniques. Procedia CIRP 36, 193ā€“198 (2015)

    ArticleĀ  Google ScholarĀ 

  15. Snyder, W.E., Qi, H., Sander, W.A.: Coordinate system for hexagonal pixels. In: Medical Imaging: Image Processing, vol. 3661 (1999)

    Google ScholarĀ 

  16. Stojmenović, I.: Honeycomb networks: topological properties and communication algorithms. IEEE Trans. Parallel Distrib. Syst. 8(10), 1036ā€“1042 (1997)

    ArticleĀ  Google ScholarĀ 

  17. Strand, R.: Using the hexagonal grid for three-dimensional images: direct fourier method reconstruction and weighted distance transform. In: 18th International Conference on Pattern Recognition, vol. 2, pp. 1169ā€“1172 (2006)

    Google ScholarĀ 

  18. Strand, R., Nagy, B., Borgefors, G.: Digital distance functions on three-dimensional grids. Theor. Comput. Sci. 412(15), 1350ā€“1363 (2011)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  19. Thompson, M.K., et al.: Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann. 65(2), 737ā€“760 (2016)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranita Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koshti, G., Biswas, R., Largeteau-Skapin, G., Zrour, R., Andres, E., Bhowmick, P. (2018). Sphere Construction on the FCC Grid Interpreted as Layered Hexagonal Grids in 3D. In: Barneva, R., Brimkov, V., Tavares, J. (eds) Combinatorial Image Analysis. IWCIA 2018. Lecture Notes in Computer Science(), vol 11255. Springer, Cham. https://doi.org/10.1007/978-3-030-05288-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05288-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05287-4

  • Online ISBN: 978-3-030-05288-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics