Skip to main content

Iterative High Resolution Tomography from Combined High-Low Resolution Sinogram Pairs

  • Conference paper
  • First Online:
Book cover Combinatorial Image Analysis (IWCIA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 11255))

Included in the following conference series:

Abstract

In some cases of tomography we can only gain high resolution projections of the object with only partial coverage, whereas only a small part of the object – a given Region of Interest (ROI) – is fully covered by high resolution projections. In such cases the structures outside the region of interest cause artefacts to appear in the reconstructed image and degrade the image quality of the tomogram. We proposed three new iterative approaches for the accurate reconstruction of the ROI by combining a high resolution set of projections, with low resolution full field of view projections and prior information. We also evaluate our methods reconstructing software phantoms, and compare their performance to other methods in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batenburg, K.J., Sijbers, J.: Dart: a practical reconstruction algorithm for discrete tomography. IEEE Trans. Image Process. 20(9), 2542–2553 (2011)

    Article  MathSciNet  Google Scholar 

  2. Chen, L., et al.: Dual resolution cone beam breast CT: a feasibility study. Med. Phys. 36(9Part1), 4007–4014 (2009)

    Article  Google Scholar 

  3. Chityala, R., Hoffmann, K.R., Rudin, S., Bednarek, D.R.: Region of interest (ROI) computed tomography (CT): comparison with full field of view (FFOV) and truncated CT for a human head phantom. In: Flynn, M.J. (ed.) Medical Imaging 2005: Physics of Medical Imaging. SPIE, April 2005

    Google Scholar 

  4. Cho, P.S., Rudd, A.D., Johnson, R.H.: Cone-beam CT from width-truncated projections. Comput. Med. Imaging Graph. 20(1), 49–57 (1996)

    Article  Google Scholar 

  5. Chun, I.K., Cho, M.H., Lee, S.C., Cho, M.H., Lee, S.Y.: X-ray micro-tomography system for small-animal imaging with zoom-in imaging capability. Phys. Med. Biol. 49(17), 3889–3902 (2004)

    Article  Google Scholar 

  6. Courdurier, M., Noo, F., Defrise, M., Kudo, H.: Solving the interior problem of computed tomography using a priori knowledge. Inverse Prob. 24(6), 065001 (2008)

    Article  MathSciNet  Google Scholar 

  7. Gentle, D.J., Spyrou, N.M.: Region of interest tomography in industrial applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 299(1), 534–537 (1990)

    Article  Google Scholar 

  8. Herman, G.T.: Fundamentals of Computerized Tomography: Image Reconstruction from Projections. Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-84628-723-7

    Book  MATH  Google Scholar 

  9. Huesman, R.H.: A new fast algorithm for the evaluation of regions of interest and statistical uncertainty in computed tomography. Phys. Med. Biol. 29(5), 543–552 (1984)

    Article  Google Scholar 

  10. Kadrmas, D.J., Jaszczak, R.J., McCormick, J.W., Coleman, R.E.: Truncation artifact reduction in transmission CT for improved SPECT attenuation compensation. Phys. Med. Biol. 40(6), 1085–1104 (1995)

    Article  Google Scholar 

  11. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York (1999)

    MATH  Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)

  13. Kudo, H., Courdurier, M., Noo, F., Defrise, M.: Tiny a prioriknowledge solves the interior problem in computed tomography. Phys. Med. Biol. 53(9), 2207–2231 (2008)

    Article  Google Scholar 

  14. Kyrieleis, A., Titarenko, V., Ibison, M., Connolley, T., Withers, P.J.: Region-of-interest tomography using filtered backprojection: assessing the practical limits. J. Microsc. 241(1), 69–82 (2010)

    Article  MathSciNet  Google Scholar 

  15. Lauritsch, G., Bruder, H.: Technical report: head phantom. Technical report, Institute of Medical Physics, Friedrich-Alexander-University Erlangen-Nrnberg (2009)

    Google Scholar 

  16. Maaß, C., Knaup, M., Kachelrieß, M.: New approaches to region of interest computed tomography. Med. Phys. 38(6Part1), 2868–2878 (2011)

    Article  Google Scholar 

  17. Patel, V., Hoffmann, K.R., Ionita, C.N., Keleshis, C., Bednarek, D.R., Rudin, S.: Rotational micro-CT using a clinical C-arm angiography gantry. Med. Phys. 35(10), 4757–4764 (2008)

    Article  Google Scholar 

  18. Reimers, P., Kettschau, A., Goebbels, J.: Region-of-interest (ROI) mode in industrial X-ray computed tomography. NDT Int. 23(5), 255–261 (1990)

    Article  Google Scholar 

  19. Sourbelle, K., Kachelriess, M., Kalender, W.A.: Reconstruction from truncated projections in CT using adaptive detruncation. Eur. Radiol. 15(5), 1008–1014 (2005)

    Article  Google Scholar 

  20. van der Sluis, A., van der Vorst, H.A.: SIRT- and CG-type methods for the iterative solution of sparse linear least-squares problems. Linear Algebra Appl. 130, 257–303 (1990)

    Article  MathSciNet  Google Scholar 

  21. Weber, S., Nagy, A., Schüle, T., Schnörr, C., Kuba, A.: A benchmark evaluation of large-scale optimization approaches to binary tomography. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 146–156. Springer, Heidelberg (2006). https://doi.org/10.1007/11907350_13

    Chapter  Google Scholar 

  22. Yu, H., Wang, G.: Compressed sensing based interior tomography. Phys. Med. Biol. 54(9), 2791–2805 (2009)

    Article  Google Scholar 

  23. Yu, H., Yang, J., Jiang, M., Wang, G.: Supplemental analysis on compressed sensing based interior tomography. Phys. Med. Biol. 54(18), N425–N432 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the project “Integrated program for training new generation of scientists in the fields of computer science”, no EFOP-3.6.3-VEKOP-16-2017-0002. The project has been supported by the European Union and co-funded by the European Social Fund. We gratefully acknowledge the support of NVIDIA Corporation with the donation of a Tesla K40 GPU used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Varga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Varga, L., Mokso, R. (2018). Iterative High Resolution Tomography from Combined High-Low Resolution Sinogram Pairs. In: Barneva, R., Brimkov, V., Tavares, J. (eds) Combinatorial Image Analysis. IWCIA 2018. Lecture Notes in Computer Science(), vol 11255. Springer, Cham. https://doi.org/10.1007/978-3-030-05288-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05288-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05287-4

  • Online ISBN: 978-3-030-05288-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics