Skip to main content

Integrated Chemoinformatics Approaches Toward Epigenetic Drug Discovery

  • Chapter
  • First Online:
Structural Bioinformatics: Applications in Preclinical Drug Discovery Process

Abstract

Epigenetics has become an important field of research in drug discovery. Epigenetic mechanisms are dynamic in nature and play a fundamental role in cellular processes. Dysregulation of epigenetic events, including cross-talk between DNA methylation and histone modifications, not only affects gene expression but also causes pathophysiological effects leading to cancer, aging, cardiovascular, neurological, and metabolic disorders. Epigenetic targets have captured the attention of researchers from diverse backgrounds to identify potential drugs for various diseases. However, drug development is a complex, time-consuming process and challenged by the high attrition rate. As with many chemotherapeutics, it is pertinent to avoid possible risk factors in epigenetic drug discovery. In this context, computational approaches can rationally guide the search for active compounds by utilizing the accumulated epigenetics knowledge base. In this chapter, we have described the chemoinformatic strategies that can be applied to facilitate the early-stage lead discovery in epigenetics, based on current best practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

CTCL:

Cutaneous T cell lymphoma

DNA:

Deoxyribonucleic acid

DNMT:

DNA methyltransferase

FDA:

Food and Drug Administration

HDAC:

Histone deacetylases

miRNA:

MicroRNA

RNA:

Ribonucleic acid

References

  1. IFPMA. The pharmaceutical industry and global health: Facts and Figures 2017. 2017; Available from: https://www.ifpma.org/wp-content/uploads/2017/02/IFPMA-Facts-And-Figures-2017.pdf

  2. Hay M et al (2014) Clinical development success rates for investigational drugs. Nat Biotechnol 32(1):40–51

    Article  CAS  PubMed  Google Scholar 

  3. Abraham AL et al (2012) Genetic modifiers of chromatin acetylation antagonize the reprogramming of epi-polymorphisms. PLoS Genet 8(9):e1002958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bierne H, Hamon M, Cossart P (2012) Epigenetics and bacterial infections. Cold Spring Harb Perspect Med 2(12):a010272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Brookes E, Shi Y (2014) Diverse epigenetic mechanisms of human disease. Annu Rev Genet 48:237–268

    Article  CAS  PubMed  Google Scholar 

  6. Epigenetics Drugs and Diagnostic Technologies Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2012–2018

    Google Scholar 

  7. Raynal NJ et al (2017) Repositioning FDA-approved drugs in combination with epigenetic drugs to reprogram colon cancer epigenome. Mol Cancer Ther 16(2):397–407

    Article  CAS  PubMed  Google Scholar 

  8. Mendez-Lucio O et al (2014) Toward drug repurposing in epigenetics: olsalazine as a hypomethylating compound active in a cellular context. ChemMedChem 9(3):560–565

    Article  CAS  PubMed  Google Scholar 

  9. Raynal NJ et al. (2014) Discovery of new epigenetic drugs among FDA-approved drug libraries. Cancer Res. 74:19

    Article  Google Scholar 

  10. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068

    Article  CAS  PubMed  Google Scholar 

  11. Bhattacharjee D, Shenoy S, Bairy KL (2016) DNA methylation and chromatin remodeling: the blueprint of cancer epigenetics. Scientifica (Cairo) 2016:6072357

    Google Scholar 

  12. Virani S et al (2012) Cancer epigenetics: a brief review. ILAR J 53(3–4):359–369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sen P et al (2016) Epigenetic mechanisms of longevity and aging. Cell 166(4):822–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Benayoun BA, Pollina EA, Brunet A (2015) Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16(10):593–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ling C, Groop L (2009) Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes 58(12):2718–2725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Landgrave-Gomez J, Mercado-Gomez O, Guevara-Guzman R (2015) Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci 9:58

    PubMed  PubMed Central  Google Scholar 

  17. Coppede F (2014) The potential of epigenetic therapies in neurodegenerative diseases. Front Genet 5:220

    PubMed  PubMed Central  Google Scholar 

  18. Lee J et al (2013) Epigenetic mechanisms of neurodegeneration in Huntington’s disease. Neurotherapeutics 10(4):664–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peedicayil J (2016) Epigenetic drugs for multiple sclerosis. Curr Neuropharmacol 14(1):3–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Relle M, Foehr B, Schwarting A (2015) Epigenetic aspects of systemic lupus erythematosus. Rheumatol Ther 2(1):33–46

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wu H et al (2015) The real culprit in systemic lupus erythematosus: abnormal epigenetic regulation. Int J Mol Sci 16(5):11013–11033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hedrich CM (2017) Epigenetics in SLE. Curr Rheumatol Rep 19(9):58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Klein K, Ospelt C, Gay S (2012) Epigenetic contributions in the development of rheumatoid arthritis. Arthritis Res Ther 14(6):227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128(4):669–681

    Article  CAS  PubMed  Google Scholar 

  25. Wang Z et al (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40(7):897–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kaminskas E et al (2005) FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist 10(3):176–182

    Article  CAS  PubMed  Google Scholar 

  27. Von Hoff DD, Slavik M, Muggia FM (1976) 5-Azacytidine. A new anticancer drug with effectiveness in acute myelogenous leukemia. Ann Intern Med 85(2):237–245

    Article  Google Scholar 

  28. Joeckel TE, Lubbert M (2012) Clinical results with the DNA hypomethylating agent 5-aza-2’-deoxycytidine (decitabine) in patients with myelodysplastic syndromes: an update. Semin Hematol 49(4):330–341

    Article  CAS  PubMed  Google Scholar 

  29. Mann BS et al (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12(10):1247–1252

    Article  CAS  PubMed  Google Scholar 

  30. Galanis E et al (2009) Phase II trial of vorinostat in recurrent glioblastoma multiforme: a north central cancer treatment group study. J Clin Oncol 27(12):2052–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Prince HM, Dickinson M (2012) Romidepsin for cutaneous T-cell lymphoma. Clin Cancer Res 18(13):3509–3515

    Article  CAS  PubMed  Google Scholar 

  32. Iyer SP, Foss FF (2015) Romidepsin for the treatment of peripheral T-cell lymphoma. Oncologist 20(9):1084–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Iwamoto FM et al (2011) A phase I/II trial of the histone deacetylase inhibitor romidepsin for adults with recurrent malignant glioma: North American Brain Tumor Consortium Study 03-03. Neuro Oncol 13(5):509–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rashidi A, Cashen AF (2015) Belinostat for the treatment of relapsed or refractory peripheral T-cell lymphoma. Future Oncol 11(11):1659–1664

    Article  CAS  PubMed  Google Scholar 

  35. McCabe MT et al (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492(7427):108–112

    Article  CAS  PubMed  Google Scholar 

  36. Chen YT et al (2016) The novel EZH2 inhibitor, GSK126, suppresses cell migration and angiogenesis via down-regulating VEGF-A. Cancer Chemother Pharmacol 77(4):757–765

    Article  CAS  PubMed  Google Scholar 

  37. Zeng D, Liu M, Pan J (2017) Blocking EZH2 methylation transferase activity by GSK126 decreases stem cell-like myeloma cells. Oncotarget 8(2):3396–3411

    PubMed  Google Scholar 

  38. Bowers EM et al (2010) Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem Biol 17(5):471–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oike T et al (2014) C646, a selective small molecule inhibitor of histone acetyltransferase p300, radiosensitizes lung cancer cells by enhancing mitotic catastrophe. Radiother Oncol 111(2):222–227

    Article  CAS  PubMed  Google Scholar 

  40. Zhao D et al (2015) C646, a novel p300/CREB-binding protein-specific inhibitor of histone acetyltransferase, attenuates influenza A virus infection. Antimicrob Agents Chemother 60(3):1902–1906

    Article  PubMed  CAS  Google Scholar 

  41. Rau RE et al (2016) DOT1L as a therapeutic target for the treatment of DNMT3A-mutant acute myeloid leukemia. Blood 128(7):971–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wong M, Polly P, Liu T (2015) The histone methyltransferase DOT1L: regulatory functions and a cancer therapy target. Am J Cancer Res 5(9):2823–2837

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang L et al (2016) JQ1, a small molecule inhibitor of BRD4, suppresses cell growth and invasion in oral squamous cell carcinoma. Oncol Rep 36(4):1989–1996

    Article  PubMed  CAS  Google Scholar 

  44. Daigle SR et al (2011) Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20(1):53–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Herold JM et al (2011) Small-molecule ligands of methyl-lysine binding proteins. J Med Chem 54(7):2504–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Loharch S, et al (2015) EpiDBase: a manually curated database for small molecule modulators of epigenetic landscape. Database (Oxford), 2015

    Google Scholar 

  47. Huggins DJ, Venkitaraman AR, Spring DR (2011) Rational methods for the selection of diverse screening compounds. ACS Chem Biol 6(3):208–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Walters WP, Namchuk M (2003) Designing screens: how to make your hits a hit. Nat Rev Drug Discov 2(4):259–266

    Article  CAS  PubMed  Google Scholar 

  49. Brenk R et al (2008) Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem 3(3):435–444

    Article  CAS  PubMed  Google Scholar 

  50. Bemis GW, Murcko MA (1996) The properties of known drugs. 1. Molecular frameworks. J Med Chem 39(15):2887–2893

    Article  CAS  PubMed  Google Scholar 

  51. McMillan M, Kahn M (2005) Investigating Wnt signaling: a chemogenomic safari. Drug Discov Today 10(21):1467–1474

    Article  CAS  PubMed  Google Scholar 

  52. Nilakantan R, Bauman N, Haraki KS (1997) Database diversity assessment: new ideas, concepts, and tools. J Comput Aided Mol Des 11(5):447–452

    Article  CAS  PubMed  Google Scholar 

  53. Lee ML, Schneider G (2001) Scaffold architecture and pharmacophoric properties of natural products and trade drugs: application in the design of natural product-based combinatorial libraries. J Comb Chem 3(3):284–289

    Article  CAS  PubMed  Google Scholar 

  54. Lewell XQ et al (2003) Drug rings database with web interface. A tool for identifying alternative chemical rings in lead discovery programs. J Med Chem 46(15):3257–3274

    Article  CAS  PubMed  Google Scholar 

  55. Kho R et al (2005) Ring systems in mutagenicity databases. J Med Chem 48(21):6671–6678

    Article  CAS  PubMed  Google Scholar 

  56. Lameijer EW et al (2006) Mining a chemical database for fragment co-occurrence: discovery of “chemical cliches”. J Chem Inf Model 46(2):553–562

    Article  CAS  PubMed  Google Scholar 

  57. Ertl P, et al (2006) Quest for the rings. In silico exploration of ring universe to identify novel bioactive heteroaromatic scaffolds. J Med Chem 49(15):4568–4573

    Article  CAS  PubMed  Google Scholar 

  58. Xie XQ (2010) Exploiting pubchem for virtual screening. Expert Opin Drug Discov 5(12):1205–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huth JR et al (2005) ALARM NMR: a rapid and robust experimental method to detect reactive false positives in biochemical screens. J Am Chem Soc 127(1):217–224

    Article  CAS  PubMed  Google Scholar 

  60. Gul S, Gribbon P (2010) Exemplification of the challenges associated with utilising fluorescence intensity based assays in discovery. Expert Opin Drug Discov 5(7):681–690

    Article  CAS  PubMed  Google Scholar 

  61. Soares KM et al (2010) Profiling the NIH small molecule repository for compounds that generate H2O2 by redox cycling in reducing environments. Assay Drug Dev Technol 8(2):152–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Crowe A et al (2013) Aminothienopyridazines and methylene blue affect Tau fibrillization via cysteine oxidation. J Biol Chem 288(16):11024–11037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Feng BY et al (2007) A high-throughput screen for aggregation-based inhibition in a large compound library. J Med Chem 50(10):2385–2390

    Article  CAS  PubMed  Google Scholar 

  64. Jasial S, Hu Y, Bajorath J (2017) How frequently are pan-assay interference compounds active? Large-scale analysis of screening data reveals diverse activity profiles, low global hit frequency, and many consistently inactive compounds. J Med Chem 60(9):3879–3886

    Article  CAS  PubMed  Google Scholar 

  65. Baell J, Walters MA (2014) Chemistry: chemical con artists foil drug discovery. Nature 513(7519):481–483

    Article  CAS  PubMed  Google Scholar 

  66. Tomasic T, Peterlin Masic L (2012) Rhodanine as a scaffold in drug discovery: a critical review of its biological activities and mechanisms of target modulation. Expert Opin Drug Discov 7(7):549–560

    Article  PubMed  CAS  Google Scholar 

  67. Ge Y et al (2012) Discovery and synthesis of hydronaphthoquinones as novel proteasome inhibitors. J Med Chem 55(5):1978–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Priyadarsini KI (2013) Chemical and structural features influencing the biological activity of curcumin. Curr Pharm Des 19(11):2093–2100

    CAS  PubMed  Google Scholar 

  69. Qin J et al (2012) Identification of a novel family of BRAF(V600E) inhibitors. J Med Chem 55(11):5220–5230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rai D et al (2008) Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. Biochem J 410(1):147–155

    Article  CAS  PubMed  Google Scholar 

  71. Baell JB (2010) Observations on screening-based research and some concerning trends in the literature. Future Med Chem 2(10):1529–1546

    Article  CAS  PubMed  Google Scholar 

  72. Habig M et al (2009) Efficient elimination of nonstoichiometric enzyme inhibitors from HTS hit lists. J Biomol Screen 14(6):679–689

    Article  CAS  PubMed  Google Scholar 

  73. Jadhav A et al (2010) Quantitative analyses of aggregation, autofluorescence, and reactivity artifacts in a screen for inhibitors of a thiol protease. J Med Chem 53(1):37–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bruns RF, Watson IA (2012) Rules for identifying potentially reactive or promiscuous compounds. J Med Chem 55(22):9763–9772

    Article  CAS  PubMed  Google Scholar 

  75. Kennedy T (1997) Managing the drug discovery/development interface. Drug Discovery Today 2(10):436–444

    Article  Google Scholar 

  76. Downs GM, Barnard JM (2002) Clustering methods and their uses in computational chemistry. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry. Wiley, New York, pp 1–40

    Google Scholar 

  77. Harrison RK (2016) Phase II and phase III failures: 2013–2015. Nat Rev Drug Discovery 15:817

    Article  CAS  PubMed  Google Scholar 

  78. Todeschini R, Consonni V (eds) (2009) Molecular descriptors for chemoinformatics. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp I–XLI

    Google Scholar 

  79. Lagorce D et al (2011) The FAF-Drugs2 server: a multistep engine to prepare electronic chemical compound collections. Bioinformatics 27(14):2018–2020

    Article  CAS  PubMed  Google Scholar 

  80. Perola E, Charifson PS (2004) Conformational analysis of drug-like molecules bound to proteins: an extensive study of ligand reorganization upon binding. J Med Chem 47(10):2499–2510

    Article  CAS  PubMed  Google Scholar 

  81. Bostrom J (2001) Reproducing the conformations of protein-bound ligands: a critical evaluation of several popular conformational searching tools. J Comput Aided Mol Des 15(12):1137–1152

    Article  CAS  PubMed  Google Scholar 

  82. Chen IJ, Foloppe N (2008) Conformational sampling of druglike molecules with MOE and catalyst: implications for pharmacophore modeling and virtual screening. J Chem Inf Model 48(9):1773–1791

    Article  CAS  PubMed  Google Scholar 

  83. Stahura FL, Bajorath J (2005) New methodologies for ligand-based virtual screening. Curr Pharm Des 11(9):1189–1202

    Article  CAS  PubMed  Google Scholar 

  84. Lorber DM, Shoichet BK (1998) Flexible ligand docking using conformational ensembles. Protein Sci 7(4):938–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lyne PD (2002) Structure-based virtual screening: an overview. Drug Discov Today 7(20):1047–1055

    Article  CAS  PubMed  Google Scholar 

  86. Sadowski J, Gasteiger J, Klebe G (1994) Comparison of automatic three-dimensional model builders using 639 X-ray structures. J Chem Inf Comput Sci 34(4):1000–1008

    Article  CAS  Google Scholar 

  87. Kirchmair J et al (2006) Comparative performance assessment of the conformational model generators omega and catalyst: a large-scale survey on the retrieval of protein-bound ligand conformations. J Chem Inf Model 46(4):1848–1861

    Article  CAS  PubMed  Google Scholar 

  88. Vainio MJ, Johnson MS (2007) Generating conformer ensembles using a multiobjective genetic algorithm. J Chem Inf Model 47(6):2462–2474

    Article  CAS  PubMed  Google Scholar 

  89. Liu X et al (2009) Cyndi: a multi-objective evolution algorithm based method for bioactive molecular conformational generation. BMC Bioinformatics 10:101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Blaney JM, Dixon JS (2007) Distance geometry in molecular modeling. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry. pp 299–335

    Chapter  Google Scholar 

  91. Wild, DJ, Blankley CJ (1999) VisualiSAR: a web-based application for clustering, structure browsing, and structure-activity relationship study. J Mol Graph Model 17(2):85–89, 120–125

    Article  CAS  PubMed  Google Scholar 

  92. Nicholls A et al (2010) Molecular shape and medicinal chemistry: a perspective. J Med Chem 53(10):3862–3886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bohm HJ, Flohr A, Stahl M (2004) Scaffold hopping. Drug Discov Today Technol 1(3):217–224

    Article  PubMed  CAS  Google Scholar 

  94. Willett P (1987) A review of chemical structure retrieval systems. J Chemom 1(3):139–155

    Article  CAS  Google Scholar 

  95. Scott DE et al (2012) Fragment-based approaches in drug discovery and chemical biology. Biochemistry 51(25):4990–5003

    Article  CAS  PubMed  Google Scholar 

  96. Lewell XQ et al (1998) RECAP–retrosynthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry. J Chem Inf Comput Sci 38(3):511–522

    Article  CAS  PubMed  Google Scholar 

  97. Varin T et al (2010) Compound set enrichment: a novel approach to analysis of primary HTS data. J Chem Inf Model 50(12):2067–2078

    Article  CAS  PubMed  Google Scholar 

  98. Dandapani S et al (2012) Selecting, acquiring, and using small molecule libraries for high-throughput screening. Curr Protoc Chem Biol 4:177–191

    PubMed  PubMed Central  Google Scholar 

  99. Petrova T et al (2012) Structural enrichment of HTS compounds from available commercial libraries. MedChemComm 3(5):571–579

    Article  CAS  Google Scholar 

  100. Kaldor SW et al (1997) Viracept (nelfinavir mesylate, AG1343): a potent, orally bioavailable inhibitor of HIV-1 protease. J Med Chem 40(24):3979–3985

    Article  CAS  PubMed  Google Scholar 

  101. Schindler T et al (2000) Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289(5486):1938–1942

    Article  CAS  PubMed  Google Scholar 

  102. Varghese JN (1999) Development of neuraminidase inhibitors as anti-influenza virus drugs. Drug Dev Res 46(3–4):176–196

    Article  CAS  Google Scholar 

  103. Rutenber EE, Stroud RM (1996) Binding of the anticancer drug ZD1694 to E. coli thymidylate synthase: assessing specificity and affinity. Structure 4(11):1317–1324

    Article  CAS  PubMed  Google Scholar 

  104. Filikov AV et al (2000) Identification of ligands for RNA targets via structure-based virtual screening: HIV-1 TAR. J Comput Aided Mol Des 14(6):593–610

    Article  CAS  PubMed  Google Scholar 

  105. Lind KE et al (2002) Structure-based computational database screening, in vitro assay, and NMR assessment of compounds that target TAR RNA. Chem Biol 9(2):185–193

    Article  CAS  PubMed  Google Scholar 

  106. Lionta E et al (2014) Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem 14(16):1923–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schwede T et al (2003) SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 31(13):3381–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Eswar N, et al (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics Chapter 5: p. Unit-5 6

    Google Scholar 

  109. Kelley LA et al (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Blundell TL, Patel S (2004) High-throughput X-ray crystallography for drug discovery. Curr Opin Pharmacol 4(5):490–496

    Article  CAS  PubMed  Google Scholar 

  111. Boland A, Chang L, Barford D (2017) The potential of cryo-electron microscopy for structure-based drug design. Essays Biochem 61(5):543–560

    Article  PubMed  Google Scholar 

  112. Sugiki, T, et al (2018) Current NMR techniques for structure-based drug discovery. Molecules, 23(1)

    Article  PubMed Central  CAS  Google Scholar 

  113. Vyas VK et al (2012) Homology modeling a fast tool for drug discovery: current perspectives. Indian J Pharm Sci 74(1):1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shao Z et al (2017) Discovery of novel DNA methyltransferase 3A inhibitors via structure-based virtual screening and biological assays. Bioorg Med Chem Lett 27(2):342–346

    Article  CAS  PubMed  Google Scholar 

  115. Cura V et al (2017) Structural studies of protein arginine methyltransferase 2 reveal its interactions with potential substrates and inhibitors. FEBS J 284(1):77–96

    Article  CAS  PubMed  Google Scholar 

  116. Siedlecki P et al (2003) Establishment and functional validation of a structural homology model for human DNA methyltransferase 1. Biochem Biophys Res Commun 306(2):558–563

    Article  CAS  PubMed  Google Scholar 

  117. Siedlecki P et al (2006) Discovery of two novel, small-molecule inhibitors of DNA methylation. J Med Chem 49(2):678–683

    Article  CAS  PubMed  Google Scholar 

  118. Brueckner B et al (2005) Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 65(14):6305–6311

    Article  CAS  PubMed  Google Scholar 

  119. Clark DE (2008) What has virtual screening ever done for drug discovery? Expert Opin Drug Discov 3(8):841–851

    Article  CAS  PubMed  Google Scholar 

  120. Lavecchia A, Di Giovanni C (2013) Virtual screening strategies in drug discovery: a critical review. Curr Med Chem 20(23):2839–2860

    Article  CAS  PubMed  Google Scholar 

  121. Wapenaar H, Dekker FJ (2016) Histone acetyltransferases: challenges in targeting bi-substrate enzymes. Clin Epigenetics 8:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Kannt A, Wieland T (2016) Managing risks in drug discovery: reproducibility of published findings. Naunyn Schmiedebergs Arch Pharmacol 389(4):353–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raman Parkesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Loharch, S., Karmahapatra, V., Gupta, P., Madathil, R., Parkesh, R. (2019). Integrated Chemoinformatics Approaches Toward Epigenetic Drug Discovery. In: Mohan, C. (eds) Structural Bioinformatics: Applications in Preclinical Drug Discovery Process. Challenges and Advances in Computational Chemistry and Physics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-05282-9_8

Download citation

Publish with us

Policies and ethics