Turbo Analytics: Applications of Big Data and HPC in Drug Discovery

  • Rajendra R. JoshiEmail author
  • Uddhavesh Sonavane
  • Vinod Jani
  • Amit Saxena
  • Shruti Koulgi
  • Mallikarjunachari Uppuladinne
  • Neeru Sharma
  • Sandeep Malviya
  • E. P. Ramakrishnan
  • Vivek Gavane
  • Avinash Bayaskar
  • Rashmi Mahajan
  • Sudhir Pandey
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 27)


In this current age of data-driven science, perceptive research is being carried out in the areas of genomics, network and metabolic biology, human, animal, organ and tissue models of drug toxicity, witnessing or capturing key biological events or interactions for drug discovery. Drug designing and repurposing involves understanding of ligand orientations for proper binding to the target molecules. The crucial requirement of finding right pose of small molecule in ligand–protein complex is done using drug docking and simulation methods. The domains of biology like genomics, biomolecular structure dynamics, and drug discovery are capable of generating vast molecular data in range of terabytes to petabytes. The analysis and visualization of this data pose a great challenge to the researchers and needs to be addressed in an accelerated and efficient way. So there is continuous need to have advanced analytics platform and algorithms which can perform analysis of this data in a faster way. Big data technologies may help to provide solutions for these problems of molecular docking and simulations.


Drug discovery Drug repurposing Hadoop Big data Molecular dynamics simulations 



Principal component analysis


Root-mean-square deviation


Root-mean-square fluctuation




  1. 1.
    Schmidt B, Hildebrandt A (2017) Next-generation sequencing: big data meets high performance computing. Drug Discov Today 22:712–717PubMedGoogle Scholar
  2. 2.
    Tripathi R et al (2016) Next-generation sequencing revolution through big data analytics. Front Life Sci 9(2):119–149Google Scholar
  3. 3.
    Taglang G, Jackson DB (2016) Use of “big data” in drug discovery and clinical trials. Gynecol Oncol 141(1):17–23PubMedGoogle Scholar
  4. 4.
    Leyens Lada et al (2017) Use of big data for drug development and for public and personal health and care. Genet Epidemiol 41(1):51–60PubMedGoogle Scholar
  5. 5.
    Richter BG, Sexton DP (2009) Managing and analyzing next-generation sequence data. PLoS Comput Biol 5(6):e1000369PubMedPubMedCentralGoogle Scholar
  6. 6.
    Stephens ZD et al (2015) Big data: astronomical or genomical? PLoS Biol 13(7):e1002195PubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhao S et al (2017) Cloud computing for next-generation sequencing data analysis. In: Cloud computing-architecture and applications. InTech, LondonGoogle Scholar
  8. 8.
    Bhuvaneshwar K et al (2015) A case study for cloud based high throughput analysis of NGS data using the globus genomics system. Comput Struct Biotechnol J 13:64–74PubMedGoogle Scholar
  9. 9.
    da Fonseca RR et al (2016) Next-generation biology: sequencing and data analysis approaches for non-model organisms. Mar Genomics 30:3–13PubMedGoogle Scholar
  10. 10.
  11. 11.
    Shaw DE et al (2008) Anton, a special-purpose machine for molecular dynamics simulation. Commun ACM 51(7):91–97Google Scholar
  12. 12.
    Bernardi RC, Melo MCR, Schulten K (2015) Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochimica et Biophysica Acta (BBA) 1850(5):872–877Google Scholar
  13. 13.
    Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314.1:141–151.APAGoogle Scholar
  14. 14.
    Swinney DC, Anthony J (2011) How were new medicines discovered? Nat Rev Drug Discov 10(7):507–519PubMedGoogle Scholar
  15. 15.
    Borhani DW, Shaw DE (2012) The future of molecular dynamics simulations in drug discovery. J Comput Aided Mol Des 26(1):15–26PubMedGoogle Scholar
  16. 16.
    Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol 9(1):71PubMedPubMedCentralGoogle Scholar
  17. 17.
    Fabricant DS, Farnsworth NR (2001) The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 109(Suppl 1):69PubMedPubMedCentralGoogle Scholar
  18. 18.
  19. 19.
    Wishart DS et al (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34.suppl_1:D668–D672Google Scholar
  20. 20.
    Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182PubMedPubMedCentralGoogle Scholar
  21. 21.
    Lengauer T, Rarey M (1996) Computational methods for biomolecular docking. Curr Opin Struct Biol 6(3):402–406PubMedGoogle Scholar
  22. 22.
    Sleigh Sara H, Barton Cheryl L (2010) Repurposing strategies for therapeutics. Pharm Med 24(3):151–159Google Scholar
  23. 23.
    Oprea TI, Mestres J (2012) Drug repurposing: far beyond new targets for old drugs. AAPS J 14(4):759–763PubMedPubMedCentralGoogle Scholar
  24. 24.
    Sagiroglu, Seref, and Duygu Sinanc (2013) Big data: a review. In: International conference on collaboration technologies and systems (CTS). IEEEGoogle Scholar
  25. 25.
    Nayak A, Poriya A, Poojary D (2013) Type of NOSQL databases and its comparison with relational databases. Int J Appl Inf Syst 5(4):16–19Google Scholar
  26. 26.
    Hadoop A (2009) Hadoop. 2009-03-06.
  27. 27.
    Zaharia M et al (2010) Spark: cluster computing with working sets. HotCloud 10(10-10):95Google Scholar
  28. 28.
    Allen WJ et al (2015) DOCK 6: impact of new features and current docking performance. J Comp Chem 36(15):1132–1156Google Scholar
  29. 29.
    Jones G et al (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3):727–748PubMedGoogle Scholar
  30. 30.
    Trott Oleg, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem 31(2):455–461PubMedPubMedCentralGoogle Scholar
  31. 31.
    Case DA et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26.16:1668–1688Google Scholar
  32. 32.
    Brooks BR et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30.10:1545–1614Google Scholar
  33. 33.
    Van Der Spoel D et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718Google Scholar
  34. 34.
    Phillips JC et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802PubMedPubMedCentralGoogle Scholar
  35. 35.
    Rysavy SJ, Bromley D, Daggett V (2014) DIVE: a graph-based visual-analytics framework for big data. IEEE Comput Graphics Appl 34(2):26–37Google Scholar
  36. 36.
    Doerr S et al (2016) HTMD: high-throughput molecular dynamics for molecular discovery. J Chem Theory Comput 12(4):1845–1852PubMedGoogle Scholar
  37. 37.
    Tu T et al (2008) A scalable parallel framework for analyzing terascale molecular dynamics simulation trajectories. In: International conference for high performance computing, networking, storage and analysis. SC 2008. IEEEGoogle Scholar
  38. 38.
    Roe DR, Cheatham TE III (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095PubMedGoogle Scholar
  39. 39.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14(1):33–38Google Scholar
  40. 40.
    Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometr Intell Lab Syst 2(1–3):37–52Google Scholar
  41. 41.
    Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10(5):449–461PubMedPubMedCentralGoogle Scholar
  42. 42.
    Privalov PL, Crane-Robinson C (2017) Role of water in the formation of macromolecular structures. Eur Biophys J 46(3):203–224PubMedGoogle Scholar
  43. 43.
    Pace CN, Fu H, Lee Fryar K, Landua J, Trevino SR, Schell D, Thurlkill RL, Imura S, Scholtz JM, Gajiwala K, Sevcik J (2014) Contribution of hydrogen bonds to protein stability. Protein Sci 23(5):652–661PubMedPubMedCentralGoogle Scholar
  44. 44.
    Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182PubMedPubMedCentralGoogle Scholar
  45. 45.
    Yuriev E, Chalmers D, Capuano B (2009) Conformational analysis of drug molecules: a practical exercise in the medicinal chemistry course. J Chem Educ 86(4):477Google Scholar
  46. 46.
    Li J, Ehlers T, Sutter J, Varma-O’Brien S, Kirchmair J (2007) CAESAR: a new conformer generation algorithm based on recursive buildup and local rotational symmetry consideration. J Chem Inf Model 47(5):1923–1932PubMedGoogle Scholar
  47. 47.
    Lagorce D, Pencheva T, Villoutreix BO, Miteva MA (2009) DG-AMMOS: a new tool to generate 3D conformation of small molecules using distance geometry and automated molecular mechanics optimization for in silico screening. BMC Chem. Bio 9(1):6Google Scholar
  48. 48.
    Sefraoui O, Aissaoui M, Eleuldj M (2012) OpenStack: toward an open-source solution for cloud computing. Int J Comput Appl 55(3):38–42Google Scholar
  49. 49.
    Stewart JJP (1990) MOPAC: a semiempirical molecular orbital program. J Comput Aided Mol Des 4(1):1–103PubMedGoogle Scholar
  50. 50.
    Hawkins PC, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010) Conformer generation with OMEGA: algorithm and validation using high quality structures from the protein databank and cambridge structural database. J Chem Inf Model 50(4):572–584PubMedPubMedCentralGoogle Scholar
  51. 51.
    Ware B (2002) Open source development with LAMP: using Linux, Apache, MySQL and PHP. Addison-Wesley Longman Publishing Co., Inc., ReadingGoogle Scholar
  52. 52.
  53. 53.
    Hukushima K, Nemoto K (1996) Exchange Monte Carlo method and application to spin glass simulations. J Phy Soc Jpn 65(6):1604–1608Google Scholar
  54. 54.
    Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3(8):673–683PubMedGoogle Scholar
  55. 55.
    Novac Natalia (2013) Challenges and opportunities of drug repositioning. Trends Pharmacol Sci 34(5):267–272PubMedGoogle Scholar
  56. 56.
    Smith Kelly M, Romanelli Frank (2005) Recreational use and misuse of phosphodiesterase 5 inhibitors. J Am Pharm Assoc 45(1):63–75Google Scholar
  57. 57.
    Pfister DG (2012) Off-label use of oncology drugs: the need for more data and then some. J Clin Oncol, 584–586PubMedGoogle Scholar
  58. 58.
    Jin G, Wong STC (2014) Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov Today 19(5):637–644PubMedGoogle Scholar
  59. 59.
    Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296(5573):1636–1639PubMedGoogle Scholar
  60. 60.
    Khrenova MG et al (2014) Modeling the role of G12 V and G13 V Ras mutations in the Ras-GAP-catalyzed hydrolysis reaction of guanosine triphosphate. Biochemistry 53(45):7093–7099PubMedGoogle Scholar
  61. 61.
    Spoerner M et al (2010) Conformational states of human rat sarcoma (Ras) protein complexed with its natural ligand GTP and their role for effector interaction and GTP hydrolysis. J Biol Chem 285(51):39768–39778PubMedPubMedCentralGoogle Scholar
  62. 62.
    Ma J, Karplus M (1997) Molecular switch in signal transduction: reaction paths of the conformational changes in ras p21. Proc Natl Acad Sci USA 94(22):11905–11910PubMedGoogle Scholar
  63. 63.
    White MA et al (1995) Multiple Ras functions can contribute to mammalian cell transformation. Cell 80(4):533–541PubMedGoogle Scholar
  64. 64.
    Schubbert S, Shannon K, Bollag G (2007) Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7(4):295PubMedGoogle Scholar
  65. 65.
    Gao C, Eriksson LA (2013) Impact of mutations on K-Ras-p 120GAP interaction. Comput Mol BioSci 3(02):9Google Scholar
  66. 66.
    Shurki A, Warshel A (2004) Why does the Ras switch “break” by oncogenic mutations? Proteins: Struct Funct Bioinf 55(1):1–10Google Scholar
  67. 67.
    Lu S et al (2016) Ras conformational ensembles, allostery, and signaling. Chem Rev 116(11):6607–6665PubMedGoogle Scholar
  68. 68.
    Sharma N, Sonavane U, Joshi R (2017) Differentiating the pre-hydrolysis states of wild-type and A59G mutant HRas: an insight through MD simulations. Comput Biol Chem 69:96–109PubMedGoogle Scholar
  69. 69.
    Sharma N, Sonavane U, Joshi R (2014) Probing the wild-type HRas activation mechanism using steered molecular dynamics, understanding the energy barrier and role of water in the activation. Eur Biophys J 43(2-3):81–95PubMedGoogle Scholar
  70. 70.
    Wang W, Fang G, Rudolph J (2012) Ras inhibition via direct Ras binding—is there a path forward? Bioorg Med Chem Lett 22(18):5766–5776PubMedGoogle Scholar
  71. 71.
    Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, Jovanovich, SB (2010) The potential and challenges of nanopore sequencing. In: Nanoscience and technology: A collection of reviews from Nature Journals, pp 261–268Google Scholar
  72. 72.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rajendra R. Joshi
    • 1
    Email author
  • Uddhavesh Sonavane
    • 1
  • Vinod Jani
    • 1
  • Amit Saxena
    • 1
  • Shruti Koulgi
    • 1
  • Mallikarjunachari Uppuladinne
    • 1
  • Neeru Sharma
    • 1
  • Sandeep Malviya
    • 1
  • E. P. Ramakrishnan
    • 1
  • Vivek Gavane
    • 1
  • Avinash Bayaskar
    • 1
  • Rashmi Mahajan
    • 1
  • Sudhir Pandey
    • 1
  1. 1.High Performance Computing-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC)Savitribai Phule Pune University CampusPuneIndia

Personalised recommendations