Skip to main content

Cooperative Control of Sliding Mode for Mobile Manipulators

  • Conference paper
  • First Online:
Social Robotics (ICSR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11357))

Included in the following conference series:

Abstract

This article describes the design and implementation of a centralized cooperative control algorithm of mobile manipulators (mobile differential platform manipulator and an omnidirectional platform manipulator) for the execution of diverse tasks in which the participation of two or more robots is necessary, e.g., the handling or transport of objects of a high weight, keeping a platform level at a fixed height, among others. For this, a sliding mode control technique is used that is applied to a fixed operating point located in a virtual line that is generated between the end effectors of the manipulator arms. For the validation of the proposed controller, the stability criterion of Lyapunov will be used and the simulation will be performed to validate the performance and performance of the proposed controller between two heterogeneous manipulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ollero, A., Merino, L.: Control and perception techniques for aerial robotics. Ann. Rev. Control 28(2), 167–178 (2004)

    Article  Google Scholar 

  2. Andaluz, V.H., et al.: Nonlinear controller of quadcopters for agricultural monitoring. In: Bebis, G., et al. (eds.) ISVC 2015. LNCS, vol. 9474, pp. 476–487. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27857-5_43

    Chapter  Google Scholar 

  3. Williams, S.B., Pizarro, O., Mahon, I., Johnson-Roberson, M.: Simultaneous localisation and mapping and dense stereoscopic seafloor reconstruction using an AUV. In: Khatib, O., Kumar, V., Pappas, G.J. (eds.) Experimental Robotics. Springer Tracts in Advanced Robotics, vol. 54. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00196-3_47

    Chapter  Google Scholar 

  4. Kuwata, Y., Wolf, M.T., Zarzhitsky, D., Huntsberger, T.L.: Safe maritime autonomous navigation with COLREGS, using velocity obstacles. IEEE J. Ocean. Eng. 39(1), 110–119 (2014)

    Article  Google Scholar 

  5. Tsai, C.C., Huang, H.C., Lin, S.C.: FPGA-based parallel DNA algorithm for optimal configurations of an omnidirectional mobile service robot performing fire extinguishment. IEEE Trans. Ind. Electron. 58(3), 1016–1026 (2011)

    Article  Google Scholar 

  6. Haddad, M., Khalil, W., Lehtihet, H.E.: Trajectory planning of unicycle mobile robots with a trapezoidal-velocity constraint. IEEE Trans. Robot. 26(5), 954–962 (2010)

    Article  Google Scholar 

  7. Li, T.H.S., Chang, S.J.: Autonomous fuzzy parking control of a car-like mobile robot. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 33(4), 451–465 (2003)

    Article  Google Scholar 

  8. Kanjanawanishkul, K., Zell, A.: Path following for an omnidirectional mobile robot based on model predictive control. In: IEEE International Conference on Robotics and Automation 2009, ICRA 2009, pp. 3341–3346 (2009)

    Google Scholar 

  9. Bischoff, R., Huggenberger, U., Prassler, E.: KUKA youBot - a mobile manipulator for research and education. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3–6 (2011)

    Google Scholar 

  10. White, G.D., Bhatt, R.M., Tang, C.P., Krovi, V.N.: Experimental evaluation of dynamic redundancy resolution in a nonholonomic wheeled mobile manipulator. IEEE/ASME Trans. Mechatron. 14(3), 349–357 (2009)

    Article  Google Scholar 

  11. Zhong, G., Kobayashi, Y., Hoshino, Y., Emaru, T.: System modeling and tracking control of mobile manipulator subjected to dynamic interaction and uncertainty. Nonlinear Dyn. 73(1–2), 167–182 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Andaluz, V., Roberti, F., Toibero, J.M., Carelli, R.: Adaptive unified motion control of mobile manipulators. Control Eng. Pract. 20(12), 1337–1352 (2012)

    Article  Google Scholar 

  13. Erhart, S., Sieber, D., Hirche, S.: An impedance-based control architecture for multi-robot cooperative dual-arm mobile manipulation. In: IEEE International Conference on Intelligent Robots and Systems, pp. 315–322 (2013)

    Google Scholar 

  14. Li, Z., Yang, C., Su, C.Y., Deng, S., Sun, F., Zhang, W.: Decentralized fuzzy control of multiple cooperating robotic manipulators with impedance interaction. IEEE Trans. Fuzzy Syst. 23(4), 1044–1056 (2015)

    Article  Google Scholar 

  15. Andaluz, V.H., Ortiz, J.S., Pérez, M., Roberti, F., Carelli, R.: Adaptive cooperative control of multi-mobile manipulators. In: IECON Proceedings of Industrial Electronic Conference, pp. 2669–2675 (2014)

    Google Scholar 

  16. Andaluz, V.H., Molina, M.F., Erazo, Y.P., Ortiz, J.S.: Numerical methods for cooperative control of double mobile manipulators. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10463, pp. 889–898. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65292-4_77

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia –CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017- 06; Control Coordinado Multi-operador aplicado a un robot Manipulador Aéreo; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, and Universidad Nacional de Chimborazo, and Grupo de Investigación en Automatización, Robótica y Sistemas Inteligentes, GI-ARSI, for the support to develop this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jorge Mora-Aguilar , Christian P. Carvajal , Jorge S. Sánchez or Víctor H. Andaluz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mora-Aguilar, J., Carvajal, C.P., Sánchez, J.S., Andaluz, V.H. (2018). Cooperative Control of Sliding Mode for Mobile Manipulators. In: Ge, S., et al. Social Robotics. ICSR 2018. Lecture Notes in Computer Science(), vol 11357. Springer, Cham. https://doi.org/10.1007/978-3-030-05204-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05204-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05203-4

  • Online ISBN: 978-3-030-05204-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics