Skip to main content

Design and Implementation of Shoulder Exoskeleton Robot

  • Conference paper
  • First Online:
Book cover Social Robotics (ICSR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11357))

Included in the following conference series:

Abstract

An exoskeleton robot for shoulder rehabilitation training is designed for patients with hemiplegia due to stroke. In respect of the human upper limb physiology, a series of mechanical structures are integrated: the retractable link meets the upper arm size of different people; the adjustable module relieves the discomfort caused by the scapulohumeral rhythm; and the gravity compensation module ensures patient safety. Then estimate the joint torque and power of the robot to determine the hardware and materials and make the robot prototype. Finally, the robot and PC form a CAN bus communication network and design the robot’s control software based on the ROS (Robot Operating System) platform to realize the basic rehabilitation training of the patient’s shoulder flexion/extension, abduction/adduction and internal/external rotation. Finally, the comfort of the exoskeleton robot is evaluated through the actual experience of healthy people and in the form of a questionnaire. The test results verify the rationality and comfort of the exoskeleton robot to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marichal, S., Malaisé, A., Modugno, V., Dermy, O., Charpillet, F., Ivaldi, S.: One-shot evaluation of the control interface of a robotic arm by non-experts. In: Agah, A., Cabibihan, J.-J., Howard, A.M., Salichs, M.A., He, H. (eds.) ICSR 2016. LNCS (LNAI), vol. 9979, pp. 458–468. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47437-3_45

    Chapter  Google Scholar 

  2. Niyetkaliyev, A.S., Hussain, S., Ghayesh, M.H., Alici, G.: Review on design and control aspects of robotic shoulder rehabilitation orthoses. IEEE Trans. Hum.-Mach. Syst. 47, 1134–1145 (2017)

    Article  Google Scholar 

  3. Hu, W., et al.: A review of upper and lower limb rehabilitation training robot. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10462, pp. 570–580. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65289-4_54

    Chapter  Google Scholar 

  4. Krebs, H., et al.: Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 327–335 (2007)

    Article  Google Scholar 

  5. Babaiasl, M., Mahdioun, S.H., Jaryani, P., Yazdani, M.: A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabil. Rehabil.: Assist. Technol. 11(4), 263–280 (2016). https://doi.org/10.3109/17483107.2014

    Article  Google Scholar 

  6. Okada, M., Nakamura, Y.: Development of a cybernetic shoulder-a 3-DOF mechanism that imitates biological shoulder motion. IEEE Trans. Robot. 21, 438–444 (2005)

    Article  Google Scholar 

  7. Chen, Y., Li, G., Zhu, Y., Zhao, J., Cai, H.: Design of a 6-DOF upper limb rehabilitation exoskeleton with parallel actuated joints. Bio-Med. Mater. Eng. 24(6), 2527–2535 (2014)

    Google Scholar 

  8. Nef, T., Riener, R., Müri, R., Mosimann, U.P.: Comfort of two shoulder actuation mechanisms for arm therapy exoskeletons: a comparative study in healthy subjects. Med. Biol. Eng. Comput. 51, 781–789 (2013)

    Article  Google Scholar 

  9. Nef, T., Riener, R.: Shoulder actuation mechanisms for arm rehabilitation exoskeletons. In: 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (2008)

    Google Scholar 

  10. Koo, D., Chang, P.H., Sohn, M.K., Shin, J.-H.: Shoulder mechanism design of an exoskeleton robot for stroke patient rehabilitation. In: 2011 IEEE International Conference on Rehabilitation Robotics (2011)

    Google Scholar 

  11. Nef, T., Guidali, M., Riener, R.: ARMin III – arm therapy exoskeleton with an ergonomic shoulder actuation. Appl. Bionics Biomech. 6, 127–142 (2009)

    Article  Google Scholar 

  12. Guo, Y., Ding, G.L., Li, Z.Q.: Development and application of a synchronous belt drive design system. Adv. Mater. Res. 971–973, 450–453 (2014)

    Article  Google Scholar 

  13. Ceccarelli, M., Carbone, G., Cafolla, D., Wang, M.: How to use 3D printing for feasibility check of mechanism design. In: Borangiu, T. (ed.) Advances in Robot Design and Intelligent Control. AISC, vol. 371, pp. 307–315. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21290-6_31

    Chapter  Google Scholar 

  14. Xiao, F., Gao, Y., Wang, Y., Zhu, Y., Zhao, J.: Design and evaluation of a 7-DOF cable-driven upper limb exoskeleton. J. Mech. Sci. Technol. 32, 855–864 (2018)

    Article  Google Scholar 

  15. Zhang, Y.X., Zeng, X.Q., Wang, X.J.: Control system design based on CANopen network for multi-legged robot with hand-fused foot. In: Zhao, B., Zhang, Y.D., Wang, G.L., Zhang, H., Zhang, J.B., Jiao, F. (eds.) History of Mechanical Technology and Mechanical Design, vol. 42. Applied Mechanics and Materials, pp. 307–312 (2011)

    Google Scholar 

  16. Hernandez-Mendez, S., et al.: Design and implementation of a robotic arm using ROS and MoveIt! In: 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC) (2017)

    Google Scholar 

  17. ROS.org. http://wiki.ros.org/

  18. Xu, G., Song, A., Li, H.: Control system design for an upper-limb rehabilitation robot. Adv. Robot. 25, 229–251 (2011)

    Article  Google Scholar 

  19. Kwakkel, G., Kollen, B.J., Krebs, H.I.: Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review. Neurorehabil. Neural Repair 22(2), 111–121 (2008). https://doi.org/10.1177/1545968307305457

    Article  Google Scholar 

Download references

Acknowledgments

This paper is supported by the Primary Research & Development Program of Jiangsu Province (Grant No. BE2015701), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170898, BK20140878), the Opening Project of Southeast University Key Laboratory of Complex Engineering System of Measurement and Control of the Ministry of Education (Grant No. MCCSE2016A06), the Natural Science Foundation of Higher Education Institutions of Jiangsu Province, China (Grant No. 16KJB460017 and No. 17KJD535001), National Natural Science Foundation of China (61603195) and the NUPTSF (Grant No. NY215050 and No. NY218027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Boheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boheng, W., Sheng, C., Bo, Z., Zhiwei, L., Xiang, G. (2018). Design and Implementation of Shoulder Exoskeleton Robot. In: Ge, S., et al. Social Robotics. ICSR 2018. Lecture Notes in Computer Science(), vol 11357. Springer, Cham. https://doi.org/10.1007/978-3-030-05204-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05204-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05203-4

  • Online ISBN: 978-3-030-05204-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics