Towards Dialogue-Based Navigation with Multivariate Adaptation Driven by Intention and Politeness for Social Robots

  • Chandrakant BotheEmail author
  • Fernando Garcia
  • Arturo Cruz Maya
  • Amit Kumar Pandey
  • Stefan Wermter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11357)


Service robots need to show appropriate social behaviour in order to be deployed in social environments such as healthcare, education, retail, etc. Some of the main capabilities that robots should have are navigation and conversational skills. If the person is impatient, the person might want a robot to navigate faster and vice versa. Linguistic features that indicate politeness can provide social cues about a person’s patient and impatient behaviour. The novelty presented in this paper is to dynamically incorporate politeness in robotic dialogue systems for navigation. Understanding the politeness in users’ speech can be used to modulate the robot behaviour and responses. Therefore, we developed a dialogue system to navigate in an indoor environment, which produces different robot behaviours and responses based on users’ intention and degree of politeness. We deploy and test our system with the Pepper robot that adapts to the changes in user’s politeness.


Social Robots Dialogue System Effect of Politeness Natural Language Understanding Human-Robot Interaction 



This project has received funding from the European Union’s Horizon 2020 framework programme for research and innovation under the Marie Sklodowska-Curie Grant Agreement No. 642667 (SECURE), the Industrial Leadership Agreement (ICT) No. 779942 (CROWDBOT), and No. 688147 (MuMMER).


  1. 1.
    Adam, C., Johal, W., Pellier, D., Fiorino, H., Pesty, S.: Social human-robot interaction: a new cognitive and affective interaction-oriented architecture. In: Agah, A., Cabibihan, J.-J., Howard, A.M., Salichs, M.A., He, H. (eds.) ICSR 2016. LNCS (LNAI), vol. 9979, pp. 253–263. Springer, Cham (2016). Scholar
  2. 2.
    Beck, A., Cañamero, L., Bard, K.A.: Towards an affect space for robots to display emotional body language. In: 19th International Symposium in Robot and Human Interactive Communication, pp. 464–469 (2010)Google Scholar
  3. 3.
    Bothe, C., Magg, S., Weber, C., Wermter, S.: Discourse-wizard: discovering deep discourse structure in your conversation with RNNs. arXiv:1806.11420 (2018)
  4. 4.
    Brown, P., Levinson, S.C.: Politeness: Some Universals in Language Usage, vol. 4. Cambridge University Press, Cambridge (1987)CrossRefGoogle Scholar
  5. 5.
    Castro-González, Á., Castillo, J.C., Alonso-Martín, F., Olortegui-Ortega, O.V., González-Pacheco, V., Malfaz, M., Salichs, M.A.: The effects of an impolite vs. a polite robot playing rock-paper-scissors. In: Agah, A., Cabibihan, J.-J., Howard, A.M., Salichs, M.A., He, H. (eds.) ICSR 2016. LNCS (LNAI), vol. 9979, pp. 306–316. Springer, Cham (2016). Scholar
  6. 6.
    Coucke, A., Saade, A., Ball, A., Bluche, T., Caulier, A., Leroy, D., Doumouro, C., Gisselbrecht, T., Caltagirone, F., Lavril, T., et al.: Snips voice platform: an embedded spoken language understanding system for private-by-design voice interfaces. arXiv preprint arXiv:1805.10190
  7. 7.
    Danescu-Niculescu-Mizil, C., Sudhof, M., Jurafsky, D., Leskovec, J., Potts, C.: A computational approach to politeness with application to social factors. In: Proceedings of ACL 2013 (Volume 1: Long Papers), pp. 250–259 (2013)Google Scholar
  8. 8.
    Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots. Robot. Auton. Syst. 42(3–4), 143–166 (2003)CrossRefzbMATHGoogle Scholar
  9. 9.
    Fox, D.: Adapting the Sample Size in Particle Filters Through KLD-Sampling. Int. J. Robot. Res. 22(12), 985–1003 (2003)CrossRefGoogle Scholar
  10. 10.
    Grinberg, M.: Flask Web Development: Developing Web Applications with Python. O’Reilly Media, Inc., Sebastopol (2018)Google Scholar
  11. 11.
    Grisettiyz, G., Stachniss, C., Burgard, W.: Improving grid-based SLAM with rao-blackwellized particle filters by adaptive proposals and selective resampling. In: International Conference on Robotics and Automation, pp. 2432–2437 (2005)Google Scholar
  12. 12.
    Holmes, J., Stubbe, M.: Power and Politeness in the Workplace: A Sociolinguistic Analysis of Talk at Work. Routledge, Abingdon (2015)CrossRefGoogle Scholar
  13. 13.
    Hubbard, D.J., Faso, D.J., Assmann, P.F., Sasson, N.J.: Production and perception of emotional prosody by adults with autism spectrum disorder. Autism Res. 10(12), 1991–2001 (2017)CrossRefGoogle Scholar
  14. 14.
    Kumar, H., Agarwal, A., Dasgupta, R., Joshi, S., Kumar, A.: Dialogue act sequence labeling using hierarchical encoder with CRF. In: AAAI Conference on Artificial Intelligence, pp. 3440–3447 (2018)Google Scholar
  15. 15.
    Lemaignan, S., Garcia, F., Jacq, A., Dillenbourg, P.: From real-time attention assessment to “with-me-ness” in human-robot interaction. In: International Conference on Human Robot Interaction, pp. 157–164 (2016)Google Scholar
  16. 16.
    Manav, B.: Color-emotion associations and color preferences: a case study for residences. Color Res. Appl. 32(2), 144–150 (2007)CrossRefGoogle Scholar
  17. 17.
    Nijdam, N.A.: Mapping emotion to color. Citeseer (2009)Google Scholar
  18. 18.
    Pandey, A., Gelin, R.: A mass-produced sociable humanoid robot: pepper: the first machine of its kind. IEEE Robot. Autom. Mag. 25(3), 40–48 (2018). Scholar
  19. 19.
    Perera, V., Pereira, T., Connell, J., Veloso, M.: Setting up pepper for autonomous navigation and personalized interaction with users. arXiv:1704.04797 (2017)
  20. 20.
    Rogers, P.S., Lee-Wong, S.M.: Reconceptualizing politeness to accommodate dynamic tensions in subordinate-to-superior reporting. J. Bus. Tech. Commun. 17(4), 379–412 (2003)CrossRefGoogle Scholar
  21. 21.
    Salem, M., Ziadee, M., Sakr, M.: Marhaba, how may I help you?: effects of politeness and culture on robot acceptance and anthropomorphization. In: International Conference on Human-robot Interaction, pp. 74–81 (2014)Google Scholar
  22. 22.
    Shi, W., Yu, Z.: Sentiment adaptive end-to-end dialog systems. In: Proceedings of ACL 2018, pp. 1509–1519 (2018)Google Scholar
  23. 23.
    Srinivasan, V., Takayama, L.: Help me please: robot politeness strategies for soliciting help from people. In: Proceedings of the Conference on Human Factors in Computing Systems, pp. 4945–4955. ACM (2016)Google Scholar
  24. 24.
    Suddrey, G., Jacobson, A., Ward, B.: Enabling a pepper robot to provide automated and interactive tours of a robotics laboratory. arXiv:1804.03288 (2018)
  25. 25.
    Ultes, S., Rojas Barahona, L.M., Su, P.H., Vandyke, D., Kim, D., Casanueva, I., Budzianowski, P., Mrkšić, N., Wen, T.H., Gasic, M., Young, S.: PyDial: a multi-domain statistical dialogue system toolkit. In: Proceedings of ACL 2017, System Demonstrations, pp. 73–78 (2017)Google Scholar
  26. 26.
    Yang, X., Chen, Y.N., Hakkani-Tür, D., Crook, P., Li, X., Gao, J., Deng, L.: End-to-end joint learning of natural language understanding and dialogue manager. In: Proceedings of IEEE ICASSP 2017, pp. 5690–5694 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Chandrakant Bothe
    • 1
    Email author
  • Fernando Garcia
    • 2
  • Arturo Cruz Maya
    • 2
  • Amit Kumar Pandey
    • 2
  • Stefan Wermter
    • 1
  1. 1.Knowledge Technology, Department of InformaticsUniversity of HamburgHamburgGermany
  2. 2.SoftBank Robotics EuropeParisFrance

Personalised recommendations