Advertisement

A Middleware for Cyber Physical Systems in an Internet of Things Environment: Case of for Mobile Asset Tracking

Conference paper
  • 328 Downloads
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 260)

Abstract

The upsurge in Cyber Physical Systems (CPSs) has made researchers conclude that these systems have the potential of rivalling the contribution of the Internet. Driving this wave is the emergence of miniaturized, cheaper and readily available location-based hardware devices. One of the main applications of CPSs is mobile asset tracking system whose roles are to monitor movements of a mobile asset and to track the object’s current position. Localization accuracy of these systems is one of the key performance indicators. This is usually maximised through the introduction of extra hardware devices. The drawbacks with this approach include restriction of the system’s application only to one domain, introduction of extra cost to the overall system and introduction of a single point of failure. Conversely, the Internet of Things (IoT) paradigm facilitates coalescing of diverse technologies through which locus data can be extracted in cost-effective and robust way. The challenge is the lack of a dependable and responsive middleware that is capable of handling and servicing such devices. We present a solution to this problem; a middleware designed around In-lining approach that acts as an insulator for hiding the internal workings of the system by providing homogenous and abstract environment to the higher layers. The evaluation of laptop tracking and monitoring system prototype was carried out through implementation of a middleware that integrates diverse IoT components in a university environment.

Keywords

Cyber Physical Systems (CPSs) Mobile Asset Management (MAM) Internet of Things (IoT) Middleware Laptop monitoring and tracking system (LMTS) 

References

  1. 1.
    Liu, X.F., Shahriar, M.K., Al Sunny, S.M.N., Leu, M.C., Hu, L.: Cyber-physical manufacturing cloud: architecture, virtualization, communication, and testbed. J. Manuf. Syst. 43, 352–364 (2017)CrossRefGoogle Scholar
  2. 2.
    Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29, 1645–1660 (2013)CrossRefGoogle Scholar
  3. 3.
    Seo, A., Jeong, J., Kim, Y.: Cyber physical systems for user reliability measurements in a sharing economy environment. Sensors 17(8), 1868 (2017)CrossRefGoogle Scholar
  4. 4.
    Zhou, P., Zuo, D., Hou, K.M., Zhang, Z.: A decentralized compositional framework for dependable decision process in self-managed cyber physical systems. Sensors 17(11), 2580 (2017)CrossRefGoogle Scholar
  5. 5.
    Gunes, V., Peter, S., Givargis, T., Vahid, F.: a survey on concepts, applications, and challenges in cyber-physical systems. KSII Trans. Internet Inf. Syst. (TIIS) 8, 4242–4268 (2014)Google Scholar
  6. 6.
    Rodriguez-Sanchez, M.C., Borromeo, S., Hernández-Tamames, J.A.: Wireless sensor networks for conservation and monitoring cultural assets. IEEE Sens. J. 11, 1382–1389 (2011)CrossRefGoogle Scholar
  7. 7.
    Kim, K., Jin, J.Y., Jin, S.I.: Classification between failed nodes and left nodes in mobile asset tracking systems. Sensors 16(2), 240 (2016)CrossRefGoogle Scholar
  8. 8.
    Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 37(6), 1067–1080 (2007)CrossRefGoogle Scholar
  9. 9.
    Kim, T.H., Jo, H.G., Lee, J.S., Kang, S.J.: A mobile asset tracking system architecture under mobile-stationary co-existing WSNs. Sensors 12(12), 17446–17462 (2012)CrossRefGoogle Scholar
  10. 10.
    Chen, Z., Xia, F., Huang, T., Fanyu, B., Wang, H.: A localization method for the internet of things. J. Supercomput. 63(3), 657–674 (2013)CrossRefGoogle Scholar
  11. 11.
    ISO: Asset Management – Management Systems Requirements (2014). http://www.iso.org/, http://www.iso.org/iso/iso-55089-colour_pdf.pdf
  12. 12.
    Balakrishnan, D., Nayak, A.: An efficient approach for mobile asset tracking using contexts. IEEE Trans. Parallel Distrib. Syst. 23, 211–218 (2012)CrossRefGoogle Scholar
  13. 13.
    Schadler, T., Yates, S., Wang, N., Sharma, A.: Mobile workforce adoption trends. Forrester Research (2013)Google Scholar
  14. 14.
    Kim, K., Chung, C.W.: In/Out status monitoring in mobile asset tracking with wireless sensor networks. Sensors 10(4), 2709–2730 (2010)CrossRefGoogle Scholar
  15. 15.
    Giannoulis, S., Koulamas, C., Emmanouilidis, C., Pistofidis, P., Karampatzakis, D.: Wireless sensor network technologies for condition monitoring of industrial assets. In: Emmanouilidis, C., Taisch, M., Kiritsis, D. (eds.) APMS 2012. IAICT, vol. 398, pp. 33–40. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40361-3_5CrossRefGoogle Scholar
  16. 16.
    Rajendran, N., Kamal, P., Nayak, D., Rabara, S.A.: WATS-SN: a wireless asset tracking system using sensor networks. In: 2005 IEEE International Conference on Personal Wireless Communications. ICPWC 2005, pp. 237–243. IEEE, January 2005Google Scholar
  17. 17.
    Jeong, S.Y., Jo, H.G., Kang, S.J.: Fully distributed monitoring architecture supporting multiple trackees and trackers in indoor mobile asset management application. Sensors 14(3), 5702–5724 (2014)CrossRefGoogle Scholar
  18. 18.
    Balakrishnan, D., Nayak, A.: An efficient approach for mobile asset tracking using contexts. IEEE Trans. Parallel Distrib. Syst. 23(2), 211–218 (2012)CrossRefGoogle Scholar
  19. 19.
    Gershenfeld, N., Krikorian, R., Cohen, D.: The internet of things. Sci. Am. 291(4), 76 (2004)CrossRefGoogle Scholar
  20. 20.
    Gama, K., Touseaui, L., Donsez, D.: Combining heterogeneous service technologies for building an internet of things middleware. Comput. Commun. 35(4), 405–417 (2012)CrossRefGoogle Scholar
  21. 21.
    Jain, A.K., Hong, L., Pankanti, S.: Internet of Things - strategic research roadmap, Technical report, Cluster of European Research projects on the Internet of Things, September 2009. http://www.internet-of-things-research.eu/pdf/IoTClusterStrategicResearchAgenda2009.pdf
  22. 22.
    International Telecommunication Union: ITU Internet Report 2005: The Internet of Things. International Telecommunication Union, Geneva (2005)Google Scholar
  23. 23.
    Evans, D.: The internet of things: how the next evolution of the internet is changing everything. CISCO white paper, vol. 1, pp. 1–11 (2011)Google Scholar
  24. 24.
    Han, S.W., Yoon, Y.B., Youn, H.Y., Cho, W.-D.: A new middleware architecture for ubiquitous computing environment. In: 2004 Proceedings Second IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems, pp. 117–121. IEEE (2004)Google Scholar
  25. 25.
    Hadim, S., Mohamed, N.: Middleware: middleware challenges and approaches for wireless sensor networks. IEEE Distrib. Syst. Online 7(3), 1 (2006)CrossRefGoogle Scholar
  26. 26.
    Römer, K., Kasten, O., Mattern, F.: Middleware challenges for wireless sensor networks. ACM SIGMOBILE Mob. Comput. Commun. Rev. 6(4), 59–61 (2002)CrossRefGoogle Scholar
  27. 27.
    Finkenzeller, K.: R.F.I.D Handbook. Wiley, Chichester (2003)CrossRefGoogle Scholar
  28. 28.
    Jain, A.K., Kumar, A.: Biometrics of next generation: an overview. Second Gener. Biom. 12(1), 2–3 (2010)Google Scholar
  29. 29.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)CrossRefGoogle Scholar
  30. 30.
    Hwang, J., Yoe, H.: Study on the context-aware middleware for ubiquitous greenhouses using wireless sensor networks. Sensors 11(5), 4539–4561 (2011)CrossRefGoogle Scholar
  31. 31.
    Rodríguez-Molina, J., Martínez, J.-F., Castillejo, P., López, L.: Combining wireless sensor networks and semantic middleware for an internet of things-based sportsman/woman monitoring application. Sensors 13(2), 1787–1835 (2013)CrossRefGoogle Scholar
  32. 32.
    Crnkovic, G.D.: Constructive research and info-computational knowledge generation. In: Magnani, L., Carnielli, W., Pizzi, C. (eds.) Model-Based Reasoning in Science and Technology. SCI, vol. 314, pp. 359–380. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15223-8_20CrossRefGoogle Scholar
  33. 33.
    Teddlie, C., Yu, F.: Mixed methods sampling a typology with examples. J. Mixed Methods Res. 1(1), 77–100 (2007)Google Scholar
  34. 34.
    Heinzelman, W.B., Murphy, A.L., Carvalho, H.S., Perillo, M.A.: Middleware to support sensor network applications. IEEE Netw. 18(1), 6–14 (2004)CrossRefGoogle Scholar
  35. 35.
    Silberschatz, A., Galvin, P., Gagne, G.: Applied operating system concepts. Wiley, Hoboken (2001)Google Scholar
  36. 36.
    Doty, N., Mulligan, D.K., Wilde, E.: Privacy issues of the W3C Geolocation API. arXiv preprint arXiv:1003.1775 (2010)
  37. 37.
    Kasanen, E., Lukka, K., Siitonen, A.: The constructive approach in management accounting research. J. Manag. Account. Res. 5, 243 (1993)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  1. 1.Unit for Research on Informatics for Droughts in Africa(URIDA)Central University of Technology, Free StateBloemfonteinSouth Africa

Personalised recommendations