Skip to main content

Insect Immunity: From Systemic to Chemosensory Organs Protection

Abstract

Insects are confronted to a wide range of infectious microorganisms. Tissues in direct contact with the environment, such as olfactory organs, are particularly exposed to pathogens. We review here the immune mechanisms operating in insects to control infections. Experiments conducted on the model organism Drosophila melanogaster (fruit fly) have provided genetic evidence that insects rely on both cellular and humoral mechanisms to control infections. Once epithelial barriers have been breached, circulating or membrane-associated innate immunity receptors trigger signaling in the fat body and lead to secretion of high concentrations of antimicrobial peptides active on fungi and bacteria in the hemolymph. This induced response involves the evolutionarily conserved Toll and immune deficiency (IMD) signaling pathways, which promote nuclear translocation of transcription factors of the NF-κB family. In addition, different subsets of differentiated blood cells or hemocytes can neutralize bacteria, fungi or parasites by phagocytosis, production of microbicidal compounds, or encapsulation. An alternative to mount costly immune responses is to sense pathogens through chemosensory cues and avoid them. Interestingly, some families of molecules, including the Toll receptors, participate in both olfaction and immunity.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-05165-5_9
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-05165-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4
Fig. 9.5

References

  • Aguiar ERGR, Olmo RP, Paro S, Ferreira FV, de Faria IJ d S, Todjro YMH, Lobo FP, Kroon EG, Meignin C, Gatherer D, Imler JL, Marques JT (2015) Sequence-independent characterization of viruses based on the pattern of viral small RNAs produced by the host. Nucleic Acids Res 43:6191–6206

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilar R, Jedlicka AE, Mintz M, Mahairaki V, Scott AL, Dimopoulos G (2005) Global gene expression analysis of Anopheles gambiae responses to microbial challenge. Insect Biochem Mol Biol 35:709–719

    CrossRef  CAS  PubMed  Google Scholar 

  • Aliyari R, Ding SW (2009) RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunol Rev 227:176–188

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Aliyari R, Wu Q, Li HW, Wang XH, Li F, Green LD, Han CS, Li WX, Ding SW (2008) Mechanism of induction and suppression of antiviral immunity directed by virus-derived small RNAs in Drosophila. Cell Host Microbe 4:387–397

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Anholt RRH, Williams TI (2010) The soluble proteome of the Drosophila antenna. Chem Senses 35:21–30

    CrossRef  CAS  PubMed  Google Scholar 

  • Bae YS, Choi MK, Lee WJ (2010) Dual oxidase in mucosal immunity and host-microbe homeostasis. Trends Immunol 31:278–287

    CrossRef  CAS  PubMed  Google Scholar 

  • Balabanidou V, Grigoraki L, Vontas J (2018) Insect cuticle: a critical determinant of insecticide resistance. Curr Opin Insect Sci 27:68–74

    CrossRef  PubMed  Google Scholar 

  • Ballard SL, Miller DL, Ganetzky B (2014) Retrograde neurotrophin signaling through Tollo regulates synaptic growth in Drosophila. J Cell Biol 204:1157–1172

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartholomay LC, Cho WL, Rocheleau TA, Boyle JP, Beck ET, Fuchs JF, Liss P, Rusch M, Butler KM, Wu RCC, Lin SP, Kuo HY, Tsao IY, Huang CY, Liu TT, Hsiao KJ, Tsai SF, Yang UC, Nappi AJ, Perna NT, Chen CC, Christensen BM (2004) Description of the transcriptomes of immune response-activated hemocytes from the mosquito vectors Aedes aegypti and Armigeres subalbatus. Infect Immun 72:4114–4126

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter RHG, Chang CI, Chelliah Y, Blandin S, Levashina EA, Deisenhofer J (2007) Structural basis for conserved complement factor-like function in the antimalarial protein TEP1. Proc Natl Acad Sci U S A 104:11615–11620

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Benoit JB, Vigneron A, Broderick NA, Wu Y, Sun JS, Carlson JR, Aksoy S, Weiss BL (2017) Symbiont-induced odorant binding proteins mediate insect host hematopoiesis. eLife 6:e19535

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Benton R, Vannice KS, Vosshall LB (2007) An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450:289–293

    CrossRef  CAS  PubMed  Google Scholar 

  • Binggeli O, Neyen C, Poidevin M, Lemaitre B (2014) Prophenoloxidase activation is required for survival to microbial infections in Drosophila. PLoS Pathog 10:e1004067

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Blandin S, Levashina EA (2004) Thioester-containing proteins and insect immunity. Mol Immunol 40:903–908

    CrossRef  CAS  PubMed  Google Scholar 

  • Blandin S, Shiao SH, Moita LF, Janse CJ, Waters AP, Kafatos FC, Levashina EA (2004) Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell 116:661–670

    CrossRef  CAS  PubMed  Google Scholar 

  • Blandin SA, Wang-Sattler R, Lamacchia M, Gagneur J, Lycett G, Ning Y, Levashina EA, Steinmetz LM (2009) Dissecting the genetic basis of resistance to malaria parasites in Anopheles gambiae. Science 326:147–150

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Boman HG, Faye I, Gudmundsson GH, Lee JY, Lidholm DQ (1991) Cell-free immunity in Cecropia. A model system for antibacterial proteins. Eur J Biochem 201:23–31

    CrossRef  CAS  PubMed  Google Scholar 

  • Bonnay F, Cohen-Berros E, Hoffmann M, Kim SY, Boulianne GL, Hoffmann JA, Matt N, Reichhart JM (2013) Big bang gene modulates gut immune tolerance in Drosophila. Proc Natl Acad Sci U S A 110:2957–2962

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Boppana S, Hillyer JF (2014) Hemolymph circulation in insect sensory appendages: functional mechanics of antennal accessory pulsatile organs (auxiliary hearts) in the mosquito Anopheles gambiae. J Exp Biol 217:3006–3014

    CrossRef  PubMed  Google Scholar 

  • Brandt JP, Ringstad N (2015) Toll-like receptor signaling promotes development and function of sensory neurons required for a C. elegans pathogen-avoidance behavior. Curr Biol 25:2228–2237

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Chtarbanova S, Petersen AJ, Ganetzky B (2013) Dnr1 mutations cause neurodegeneration in Drosophila by activating the innate immune response in the brain. Proc Natl Acad Sci U S A 110:E1752–E1760

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Carthew RW, Agbu P, Giri R (2017) MicroRNA function in Drosophila melanogaster. Semin Cell Dev Biol 65:29–37

    CrossRef  CAS  PubMed  Google Scholar 

  • Chang CI, Ihara K, Chelliah Y, Mengin-Lecreulx D, Wakatsuki S, Deisenhofer J (2005) Structure of the ectodomain of Drosophila peptidoglycan-recognition protein LCa suggests a molecular mechanism for pattern recognition. Proc Natl Acad Sci U S A 102:10279–10284

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Choe KM, Werner T, Stöven S, Hultmark D, Anderson KV (2002) Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296:359–362

    CrossRef  CAS  PubMed  Google Scholar 

  • Clem RJ (2015) Viral IAPs, then and now. Semin Cell Dev Biol 39:72–79

    CrossRef  CAS  PubMed  Google Scholar 

  • Colinet D, Deleury E, Anselme C, Cazes D, Poulain J, Azema-Dossat C, Belghazi M, Gatti JL, Poirie M (2013) Extensive inter- and intraspecific venom variation in closely related parasites targeting the same host: the case of Leptopilina parasitoids of Drosophila. Insect Biochem Mol Biol 43:601–611

    CrossRef  CAS  PubMed  Google Scholar 

  • Cribb BW, Merritt DJ (2013) Chemoreception. In: Chapman RF, Simpson SJ, Douglas AE (eds) The insects: structure and function, vol 5. Cambridge University Press, Cambridge, pp 771–791

    Google Scholar 

  • Daigneault J, Klemetsaune L, Wasserman SA (2013) The IRAK homolog Pelle is the functional counterpart of IκB kinase in the Drosophila Toll pathway. PLoS One 8:e75150

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • De Gregorio E, Spellman PT, Tzou P, Rubin GM, Lemaitre B (2002) The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J 21:2568–2579

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Dear TN, Boehm T, Keverne EB, Rabbitts TH (1991) Novel genes for potential ligand-binding proteins in subregions of the olfactory mucosa. EMBO J 10:2813–2819

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias FA, Gandara ACP, Queiroz-Barros FG, Oliveira RLL, Sorgine MHF, Braz GRC, Oliveira PL (2013) Ovarian dual oxidase (Duox) activity is essential for insect eggshell hardening and waterproofing. J Biol Chem 288:35058–35067

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding SW (2010) RNA-based antiviral immunity. Nat Rev Immunol 10:632–644

    CrossRef  CAS  PubMed  Google Scholar 

  • El Chamy L, Leclerc V, Caldelari I, Reichhart JM (2008) Sensing of “danger signals” and pathogen-associated molecular patterns defines binary signaling pathways “upstream” of Toll. Nat Immunol 9:1165–1170

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-Hernández I, Scheenaard E, Pollarolo G, Gonzalez C (2016) The translational relevance of Drosophila in drug discovery. EMBO Rep 17:471–472

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrandon D, Imler JL, Hetru C, Hoffmann JA (2007) The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 7:862–874

    CrossRef  CAS  PubMed  Google Scholar 

  • Foley E, O’Farrell PH (2004) Functional dissection of an innate immune response by a genome-wide RNAi screen. PLoS Biol 2:e203

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraiture M, Baxter RHG, Steinert S, Chelliah Y, Frolet C, Quispe-Tintaya W, Hoffmann JA, Blandin SA, Levashina EA (2009) Two mosquito LRR proteins function as complement control factors in the TEP1-mediated killing of Plasmodium. Cell Host Microbe 5:273–284

    CrossRef  CAS  PubMed  Google Scholar 

  • Franc NC, Heitzler P, Ezekowitz RA, White K (1999) Requirement for croquemort in phagocytosis of apoptotic cells in Drosophila. Science 284:1991–1994

    CrossRef  CAS  PubMed  Google Scholar 

  • Galiana-Arnoux D, Dostert C, Schneemann A, Hoffmann JA, Imler JL (2006) Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila. Nat Immunol 7:590–597

    CrossRef  CAS  PubMed  Google Scholar 

  • Georgel P, Naitza S, Kappler C, Ferrandon D, Zachary D, Swimmer C, Kopczynski C, Duyk G, Reichhart JM, Hoffmann JA (2001) Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev Cell 1:503–514

    CrossRef  CAS  PubMed  Google Scholar 

  • Gobert V, Gottar M, Matskevich AA, Rutschmann S, Royet J, Belvin M, Hoffmann JA, Ferrandon D (2003) Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science 302:2126–2130

    CrossRef  CAS  PubMed  Google Scholar 

  • Gomez-Diaz C, Bargeton B, Abuin L, Bukar N, Reina JH, Bartoi T, Graf M, Ong H, Ulbrich MH, Masson JF, Benton R (2016) A CD36 ectodomain mediates insect pheromone detection via a putative tunnelling mechanism. Nat Commun 7:11866

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottar M, Gobert V, Michel T, Belvin M, Duyk G, Hoffmann JA, Ferrandon D, Royet J (2002) The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416:640–644

    CrossRef  CAS  PubMed  Google Scholar 

  • Gottar M, Gobert V, Matskevich AA, Reichhart JM, Wang C, Butt TM, Belvin M, Hoffmann JA, Ferrandon D (2006) Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127:1425–1437

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Herzog VA, Ameres SL (2015) Approaching the golden fleece a molecule at a time: biophysical insights into argonaute-instructed nucleic acid interactions. Mol Cell 59:4–7

    CrossRef  CAS  PubMed  Google Scholar 

  • Hillyer JF (2016) Insect immunology and hematopoiesis. Dev Comp Immunol 58:102–118

    CrossRef  CAS  PubMed  Google Scholar 

  • Hoffmann JA (2003) The immune response of Drosophila. Nature 426:33–38

    CrossRef  CAS  PubMed  Google Scholar 

  • Hoffmann JA, Hetru C (1992) Insect defensins: inducible antibacterial peptides. Immunol Today 13:411–415

    CrossRef  CAS  PubMed  Google Scholar 

  • Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA (1999) Phylogenetic perspectives in innate immunity. Science 284:1313–1318

    CrossRef  CAS  PubMed  Google Scholar 

  • Hou CX, Qin GX, Liu T, Mei XL, Li B, Shen ZY, Guo XJ (2013) Differentially expressed genes in the cuticle and hemolymph of the silkworm, Bombyx mori, injected with the fungus Beauveria bassiana. J Insect Sci 13:138

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Imler JL, Zheng L (2004) Biology of Toll receptors: lessons from insects and mammals. J Leukoc Biol 75:18–26

    CrossRef  CAS  PubMed  Google Scholar 

  • Imler JL, Bulet P (2005) Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem Immunol Allergy 86:1–21

    CAS  PubMed  Google Scholar 

  • Irving P, Troxler L, Heuer TS, Belvin M, Kopczynski C, Reichhart JM, Hoffmann JA, Hetru C (2001) A genome-wide analysis of immune responses in Drosophila. Proc Natl Acad Sci U S A 98:15119–15124

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Issa N, Guillaumot N, Lauret E, Matt N, Schaeffer-Reiss C, Van Dorsselaer A, Reichhart JM, Veillard F (2018) The circulating protease Persephone is an immune sensor for microbial proteolytic activities upstream of the Drosophila Toll pathway. Mol Cell 69:539–550

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang IH, Chosa N, Kim SH, Nam HJ, Lemaitre B, Ochiai M, Kambris Z, Brun S, Hashimoto C, Ashida M, Brey PT, Lee WJ (2006) A Spätzle-processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev Cell 10:45–55

    CrossRef  CAS  PubMed  Google Scholar 

  • Kaneko T, Yano T, Aggarwal K, Lim JH, Ueda K, Oshima Y, Peach C, Erturk-Hasdemir D, Goldman WE, Oh BH, Kurata S, Silverman N (2006) PGRP-LC and PGRP-LE have essential yet distinct functions in the drosophila immune response to monomeric DAP-type peptidoglycan. Nat Immunol 7:715–723

    CrossRef  CAS  PubMed  Google Scholar 

  • Karlikow M, Goic B, Mongelli V, Salles A, Schmitt C, Bonne I, Zurzolo C, Saleh MC (2016) Drosophila cells use nanotube-like structures to transfer dsRNA and RNAi machinery between cells. Sci Rep 6:27085

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemp C, Imler JL (2009) Antiviral immunity in drosophila. Curr Opin Immunol 21:3–9

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch SI, Groh K, Vogel H, Hansson BS, Kleineidam CJ, Grosse-Wilde E (2013) Caste-specific expression patterns of immune response and chemosensory related genes in the leaf-cutting ant, Atta vollenweideri. PLoS One 8:e81518

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kocks C, Cho JH, Nehme N, Ulvila J, Pearson AM, Meister M, Strom C, Conto SL, Hetru C, Stuart LM, Stehle T, Hoffmann JA, Reichhart JM, Ferrandon D, Rämet M, Ezekowitz RAB (2005) Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123:335–346

    CrossRef  CAS  PubMed  Google Scholar 

  • Koehbach J (2017) Structure-activity relationships of insect defensins. Front Chem 5:45. https://doi.org/10.3389/fchem.2017.00045

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Krzemień J, Dubois L, Makki R, Meister M, Vincent A, Crozatier M (2007) Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature 446:325–328

    CrossRef  CAS  PubMed  Google Scholar 

  • Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaitre B (2011) Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc Natl Acad Sci U S A 108:15966–15971

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lanot R, Zachary D, Holder F, Meister M (2001) Postembryonic hematopoiesis in Drosophila. Dev Biol 230:243–257

    CrossRef  CAS  PubMed  Google Scholar 

  • Lazzaro BP (2015) Adenosine signaling and the energetic costs of induced immunity. PLoS Biol 13:e1002136

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KA, Kim SH, Kim EK, Ha EM, You H, Kim B, Kim MJ, Kwon Y, Ryu JH, Lee WJ (2013) Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell 153:797–811

    CrossRef  CAS  PubMed  Google Scholar 

  • Legeai F, Gimenez S, Duvic B, Escoubas JM, Gosselin Grenet AS, Blanc F, Cousserans F, Séninet I, Bretaudeau A, Mutuel D, Girard PA, Monsempes C, Magdelenat G, Hilliou F, Feyereisen R, Ogliastro M, Volkoff AN, Jacquin-Joly E, d’Alencon E, Nègre N, Fournier P (2014) Establishment and analysis of a reference transcriptome for Spodoptera frugiperda. BMC Genomics 15:704

    Google Scholar 

  • Léger P, Lara E, Jagla B, Sismeiro O, Mansuroglu Z, Coppée JY, Bonnefoy E, Bouloy M (2013) Dicer-2- and Piwi-mediated RNA interference in Rift Valley fever virus-infected mosquito cells. J Virol 87:1631–1648

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Levashina EA, Langley E, Green C, Gubb D, Ashburner M, Hoffmann JA, Reichhart JM (1999) Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285:1917–1919

    CrossRef  CAS  PubMed  Google Scholar 

  • Levashina EA, Moita LF, Blandin S, Vriend G, Lagueux M, Kafatos FC (2001) Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104:709–718

    CrossRef  CAS  PubMed  Google Scholar 

  • Ligoxygakis P, Pelte N, Hoffmann JA, Reichhart JM (2002) Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297:114–116

    CrossRef  CAS  PubMed  Google Scholar 

  • Liu GX, Picimbon JF (2017) Bacterial origin of chemosensory odor-binding proteins. Gene Transl Bioinform 3:e1548

    Google Scholar 

  • Liu GX, Xuan N, Chu D, Xie HY, Fan ZX, Bi YP, Picimbon JF, Li YF, Qin YC, Zhong ST, Gao ZL, Pan WL, Wang GY, Rajashekar B (2014) Biotype expression and insecticide response of Bemisia tabaci chemosensory protein-1. Arch Insect Biochem Physiol 85:137–151

    CrossRef  CAS  PubMed  Google Scholar 

  • Liu GX, Ma HM, Xie YN, Xuan N, Xia G, Fan ZX, Rajashekar B, Arnaud P, Offmann B, Picimbon JF (2016) Biotype characterization, developmental profiling, insecticide response and binding property of Bemisia tabaci chemosensory proteins: role of CSP in insect defense. PLoS One 11:e0154706

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu GX, Arnaud P, Offmann B, Picimbon JF (2017) Genotyping and bio-sensing chemosensory proteins in insects. Sensors 17:1801

    CrossRef  CAS  PubMed Central  Google Scholar 

  • Lu A, Zhang Q, Zhang J, Yang B, Wu K, Xie W, Luan YX, Ling E (2014) Insect prophenoloxidase: the view beyond immunity. Front Physiol 5:252

    PubMed  PubMed Central  Google Scholar 

  • Lu J, Sun PD (2012) The structure of the TLR5-flagellin complex: a new mode of pathogen detection, conserved receptor dimerization for signaling. Sci Signal 5:pe11

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal L, Martinez-Agosto JA, Evans CJ, Hartenstein V, Banerjee U (2007) A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature 446:320–324

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • McIlroy G, Foldi I, Aurikko J, Wentzell JS, Lim MA, Fenton JC, Gay NJ, Hidalgo A (2013) Toll-6 and Toll-7 function as neurotrophin receptors in the Drosophila melanogaster CNS. Nat Neurosci 16:1248–1256

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Medzhitov R, Janeway CA (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296:298–300

    CrossRef  CAS  PubMed  Google Scholar 

  • Misof B et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767

    CrossRef  CAS  PubMed  Google Scholar 

  • Morazzani EM, Wiley MR, Murreddu MG, Adelman ZN, Myles KM (2012) Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma. PLoS Pathog 8:e1002470

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Nainu F, Tanaka Y, Shiratsuchi A, Nakanishi Y (2015) Protection of insects against viral infection by apoptosis-dependent phagocytosis. J Immunol Baltim Md 1950 195:5696–5706

    CAS  Google Scholar 

  • Naitza S, Rossé C, Kappler C, Georgel P, Belvin M, Gubb D, Camonis J, Hoffmann JA, Reichhart JM (2002) The Drosophila immune defense against gram-negative infection requires the death protein dFADD. Immunity 17:575–581

    CrossRef  CAS  PubMed  Google Scholar 

  • Navajas M, Migeon A, Alaux C, Martin-Magniette M, Robinson G, Evans J, Cros-Arteil S, Crauser D, Le Conte Y (2008) Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genomics 9:301

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonaka M (2000) Evolution of the complement system. Curr Top Microbiol Immunol 248:37–50

    CAS  PubMed  Google Scholar 

  • Obbard DJ, Callister DM, Jiggins FM, Soares DC, Yan G, Little TJ (2008) The evolution of TEP1, an exceptionally polymorphic immunity gene in Anopheles gambiae. BMC Evol Biol 8:274

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuda K, Tong M, Dempsey B, Moore KJ, Gazzinelli RT, Silverman N (2016) Leishmania amazonensis engages CD36 to drive parasitophorous vacuole maturation. PLoS Pathog 12:e1005669

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira DS, Brito NF, Nogueira FCS, Moreira MF, Leal WS, Soares MR, Melo ACA (2017) Proteomic analysis of the kissing bug Rhodnius prolixus antenna. J Insect Physiol 100:108–118

    Google Scholar 

  • Paquette N, Broemer M, Aggarwal K, Chen L, Husson M, Ertürk-Hasdemir D, Reichhart JM, Meier P, Silverman N (2010) Caspase-mediated cleavage, IAP binding, and ubiquitination: linking three mechanisms crucial for Drosophila NF-kappaB signaling. Mol Cell 37:172–182

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Paré AC, Vichas A, Fincher CT, Mirman Z, Farrell DL, Mainieri A, Zallen JA (2014) A positional Toll receptor code directs convergent extension in Drosophila. Nature 515:523–527

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Paro S, Imler JL, Meignin C (2015) Sensing viral RNAs by Dicer/RIG-I like ATPases across species. Curr Opin Immunol 32:106–113

    CrossRef  CAS  PubMed  Google Scholar 

  • Pass G (1985) Gross and fine structure of the antennal circulatory organ in cockroaches (Blattodea, Insecta). J Morphol 185:255–268

    CrossRef  PubMed  Google Scholar 

  • Patil RS, Ghomade V, Deshpande MV (2000) Chitinolytic enzymes: an exploration. Enzym Microb Technol 26:473–483

    CrossRef  CAS  Google Scholar 

  • Petit M, Mongelli V, Frangeul L, Blanc H, Jiggins F, Saleh MC (2016) piRNA pathway is not required for antiviral defense in Drosophila melanogaster. Proc Natl Acad Sci U S A 113:E4218–E4227

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Petkau K, Fast D, Duggal A, Foley E (2016) Comparative evaluation of the genomes of three common Drosophila-associated bacteria. Biol Open 5:1305–1316

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Philips JA, Rubin EJ, Perrimon N (2005) Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection. Science 309:1251–1253

    CrossRef  CAS  PubMed  Google Scholar 

  • Picimbon JF (2003) Biochemistry and evolution of CSP and OBP proteins. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-The biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, SanDiego/London, pp 539–566

    CrossRef  Google Scholar 

  • Picimbon JF (2014) Renaming Bombyx mori chemosensory proteins. Int J Bioorg Chem Mol Biol 2e:1–4

    Google Scholar 

  • Picimbon JF, Dietrich K, Breer H, Krieger J (2000a) Chemosensory proteins of Locusta migratoria (Orthoptera: Acrididae). Insect Biochem Mol Biol 30:233–241

    CrossRef  CAS  PubMed  Google Scholar 

  • Picimbon JF, Dietrich K, Angeli S, Scaloni A, Krieger J, Breer H, Pelosi P (2000b) Purification and molecular cloning of chemosensory proteins from Bombyx mori. Arch Insect Biochem Physiol 44:120–129

    CrossRef  CAS  PubMed  Google Scholar 

  • Picimbon JF, Dietrich K, Krieger J, Breer H (2001) Identity and expression pattern of chemosensory proteins in Heliothis virescens (Lepidoptera, Noctuidae). Insect Biochem Mol Biol 31:1173–1181

    CrossRef  CAS  PubMed  Google Scholar 

  • Pradel E, Zhang Y, Pujol N, Matsuyama T, Bargmann CI, Ewbank JJ (2007) Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proc Natl Acad Sci U S A 104:2295–2300

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Richard FJ, Aubert A, Grozinger CM (2008) Modulation of social interactions by immune stimulation in honey bee, Apis mellifera, workers. BMC Biol 6:50

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ringo J, Sharon G, Segal D (2011) Bacteria-induced sexual isolation in Drosophila. Fly (Austin) 5:310–315

    CrossRef  CAS  Google Scholar 

  • Rogers ME, Sun M, Lerner MR, Vogt RG (1997) Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the CD36 family of membrane proteins. J Biol Chem 272:14792–14799

    CrossRef  CAS  PubMed  Google Scholar 

  • Roignant JY, Carré C, Mugat B, Szymczak D, Lepesant JA, Antoniewski C (2003) Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA N Y N 9:299–308

    CrossRef  CAS  Google Scholar 

  • Royet J, Gupta D, Dziarski R (2011) Peptidoglycan recognition proteins: modulators of the microbiome and inflammation. Nat Rev Immunol 11:837–851

    CrossRef  CAS  PubMed  Google Scholar 

  • Rutschmann S, Jung AC, Hetru C, Reichhart JM, Hoffmann JA, Ferrandon D (2000) The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity 12:569–580

    CrossRef  CAS  PubMed  Google Scholar 

  • Sabatier L, Jouanguy E, Dostert C, Zachary D, Dimarcq JL, Bulet P, Imler JL (2003) Pherokine-2 and -3: two Drosophila molecules related to pheromone/odor-binding proteins induced by viral and bacterial infections. Eur J Biochem FEBS 270:3398–3407

    CrossRef  CAS  Google Scholar 

  • Saleh MC, Tassetto M, van Rij RP, Goic B, Gausson V, Berry B, Jacquier C, Antoniewski C, Andino R (2009) Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature 458:346–350

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci U S A 107:20051–20056

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Shim J, Mukherjee T, Mondal BC, Liu T, Young GC, Wijewarnasuriya DP, Banerjee U (2013) Olfactory control of blood progenitor maintenance. Cell 155:1141–1153

    CrossRef  CAS  PubMed  Google Scholar 

  • Shokal U, Eleftherianos I (2017) Evolution and function of thioester-containing proteins and the complement system in the innate immune response. Front Immunol 8:759

    Google Scholar 

  • Sim S, Ramirez JL, Dimopoulos G (2012) Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior. PLoS Pathog 8:e1002631

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Siomi MC, Miyoshi T, Siomi H (2010) piRNA-mediated silencing in Drosophila germlines. Semin Cell Dev Biol 21:754–759

    CrossRef  CAS  PubMed  Google Scholar 

  • Soldano A, Alpizar YA, Boonen B, Franco L, López-Requena A, Liu G, Mora N, Yaksi E, Voets T, Vennekens R, Hassan BA, Talavera K (2016) Gustatory-mediated avoidance of bacterial lipopolysaccharides via TRPA1 activation in Drosophila. eLife 5:e13133

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Steiner H (2004) Peptidoglycan recognition proteins: on and off switches for innate immunity. Immunol Rev 198:83–96

    CrossRef  CAS  PubMed  Google Scholar 

  • Steiner H, Hultmark D, Engström A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248

    CrossRef  CAS  PubMed  Google Scholar 

  • Stensmyr MC, Dweck HKM, Farhan A, Ibba I, Strutz A, Mukunda L, Linz J, Grabe V, Steck K, Lavista-Llanos S, Wicher D, Sachse S, Knaden M, Becher PG, Seki Y, Hansson BS (2012) A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151:1345–1357

    CrossRef  CAS  PubMed  Google Scholar 

  • Stoven S, Silverman N, Junell A, Hedengren-Olcott M, Erturk D, Engstrom Y, Maniatis T, Hultmark D (2003) Caspase-mediated processing of the Drosophila NF-kappaB factor Relish. Proc Natl Acad Sci U S A 100:5991–5996

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Towb P, Chiem DN, Foster BA, Wasserman SA (2004) Regulated assembly of the Toll signaling complex drives Drosophila dorsoventral patterning. EMBO J 23:100–110

    CrossRef  CAS  PubMed  Google Scholar 

  • Tzou P, Ohresser S, Ferrandon D, Capovilla M, Reichhart JM, Lemaitre B, Hoffmann JA, Imler JL (2000) Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13:737–748

    CrossRef  CAS  PubMed  Google Scholar 

  • Valanne S, Wang JH, Rämet M (2011) The Drosophila Toll signaling pathway. J Immunol 186:649–656

    CrossRef  CAS  PubMed  Google Scholar 

  • van Rij RP, Saleh MC, Berry B, Foo C, Houk A, Antoniewski C, Andino R (2006) The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev 20:2985–2995

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Venu I, Durisko Z, Xu J, Dukas R (2014) Social attraction mediated by fruit flies’ microbiome. J Exp Biol 217:1346–1352

    CrossRef  PubMed  Google Scholar 

  • Vilmos P, Kurucz E (1998) Insect immunity: evolutionary roots of the mammalian innate immune system. Immunol Lett 62:59–66

    CrossRef  CAS  PubMed  Google Scholar 

  • Vodovar N, Bronkhorst AW, van Cleef KWR, Miesen P, Blanc H, van Rij RP, Saleh MC (2012) Arbovirus-derived piRNAs exhibit a ping-pong signature in mosquito cells. PLoS One 7:e30861

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XH, Aliyari R, Li WX, Li HW, Kim K, Carthew R, Atkinson P, Ding SW (2006) RNA interference directs innate immunity against viruses in adult Drosophila. Science 312:452–454

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward A, Hong W, Favaloro V, Luo L (2015) Toll receptors instruct axon and dendrite targeting and participate in synaptic partner matching in a Drosophila olfactory circuit. Neuron 85:1013–1028

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber ANR, Tauszig-Delamasure S, Hoffmann JA, Lelièvre E, Gascan H, Ray KP, Morse MA, Imler JL, Gay NJ (2003) Binding of the Drosophila cytokine Spätzle to Toll is direct and establishes signaling. Nat Immunol 4:794–800

    CrossRef  CAS  PubMed  Google Scholar 

  • Xuan N, Guo X, Xie HY, Lou QN, Bo LX, Liu GX, Picimbon JF (2015) Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins. Insect Sci 22:203–219

    CrossRef  CAS  PubMed  Google Scholar 

  • Yano T, Mita S, Ohmori H, Oshima Y, Fujimoto Y, Ueda R, Takada H, Goldman WE, Fukase K, Silverman N, Yoshimori T, Kurata S (2008) Autophagic control of listeria through intracellular innate immune recognition in Drosophila. Nat Immunol 9:908–916

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida H, Ochiai M, Ashida M (1986) Beta-1,3-glucan receptor and peptidoglycan receptor are present as separate entities within insect prophenoloxidase activating system. Biochem Biophys Res Commun 141:1177–1184

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhang ZT, Zhu SY (2009) Drosomycin, an essential component of antifungal defence in Drosophila. Insect Mol Biol 18:549–556

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhao Y, Li H, Miao X (2015) Proteomic analysis of silkworm antennae. J Chem Ecol 41:1037–1042

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhu B, Pennack JA, McQuilton P, Forero MG, Mizuguchi K, Sutcliffe B, Gu CJ, Fenton JC, Hidalgo A (2008) Drosophila neurotrophins reveal a common mechanism for nervous system formation. PLoS Biol 6:e284

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Imler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Einhorn, E., Imler, JL. (2019). Insect Immunity: From Systemic to Chemosensory Organs Protection. In: Picimbon, JF. (eds) Olfactory Concepts of Insect Control - Alternative to insecticides. Springer, Cham. https://doi.org/10.1007/978-3-030-05165-5_9

Download citation