Insect Immunity: From Systemic to Chemosensory Organs Protection

  • Evelyne Einhorn
  • Jean-Luc ImlerEmail author


Insects are confronted to a wide range of infectious microorganisms. Tissues in direct contact with the environment, such as olfactory organs, are particularly exposed to pathogens. We review here the immune mechanisms operating in insects to control infections. Experiments conducted on the model organism Drosophila melanogaster (fruit fly) have provided genetic evidence that insects rely on both cellular and humoral mechanisms to control infections. Once epithelial barriers have been breached, circulating or membrane-associated innate immunity receptors trigger signaling in the fat body and lead to secretion of high concentrations of antimicrobial peptides active on fungi and bacteria in the hemolymph. This induced response involves the evolutionarily conserved Toll and immune deficiency (IMD) signaling pathways, which promote nuclear translocation of transcription factors of the NF-κB family. In addition, different subsets of differentiated blood cells or hemocytes can neutralize bacteria, fungi or parasites by phagocytosis, production of microbicidal compounds, or encapsulation. An alternative to mount costly immune responses is to sense pathogens through chemosensory cues and avoid them. Interestingly, some families of molecules, including the Toll receptors, participate in both olfaction and immunity.


  1. Aguiar ERGR, Olmo RP, Paro S, Ferreira FV, de Faria IJ d S, Todjro YMH, Lobo FP, Kroon EG, Meignin C, Gatherer D, Imler JL, Marques JT (2015) Sequence-independent characterization of viruses based on the pattern of viral small RNAs produced by the host. Nucleic Acids Res 43:6191–6206CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aguilar R, Jedlicka AE, Mintz M, Mahairaki V, Scott AL, Dimopoulos G (2005) Global gene expression analysis of Anopheles gambiae responses to microbial challenge. Insect Biochem Mol Biol 35:709–719CrossRefPubMedGoogle Scholar
  3. Aliyari R, Ding SW (2009) RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunol Rev 227:176–188CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aliyari R, Wu Q, Li HW, Wang XH, Li F, Green LD, Han CS, Li WX, Ding SW (2008) Mechanism of induction and suppression of antiviral immunity directed by virus-derived small RNAs in Drosophila. Cell Host Microbe 4:387–397CrossRefPubMedPubMedCentralGoogle Scholar
  5. Anholt RRH, Williams TI (2010) The soluble proteome of the Drosophila antenna. Chem Senses 35:21–30CrossRefPubMedGoogle Scholar
  6. Bae YS, Choi MK, Lee WJ (2010) Dual oxidase in mucosal immunity and host-microbe homeostasis. Trends Immunol 31:278–287CrossRefPubMedPubMedCentralGoogle Scholar
  7. Balabanidou V, Grigoraki L, Vontas J (2018) Insect cuticle: a critical determinant of insecticide resistance. Curr Opin Insect Sci 27:68–74CrossRefPubMedGoogle Scholar
  8. Ballard SL, Miller DL, Ganetzky B (2014) Retrograde neurotrophin signaling through Tollo regulates synaptic growth in Drosophila. J Cell Biol 204:1157–1172CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bartholomay LC, Cho WL, Rocheleau TA, Boyle JP, Beck ET, Fuchs JF, Liss P, Rusch M, Butler KM, Wu RCC, Lin SP, Kuo HY, Tsao IY, Huang CY, Liu TT, Hsiao KJ, Tsai SF, Yang UC, Nappi AJ, Perna NT, Chen CC, Christensen BM (2004) Description of the transcriptomes of immune response-activated hemocytes from the mosquito vectors Aedes aegypti and Armigeres subalbatus. Infect Immun 72:4114–4126CrossRefPubMedPubMedCentralGoogle Scholar
  10. Baxter RHG, Chang CI, Chelliah Y, Blandin S, Levashina EA, Deisenhofer J (2007) Structural basis for conserved complement factor-like function in the antimalarial protein TEP1. Proc Natl Acad Sci U S A 104:11615–11620CrossRefPubMedPubMedCentralGoogle Scholar
  11. Benoit JB, Vigneron A, Broderick NA, Wu Y, Sun JS, Carlson JR, Aksoy S, Weiss BL (2017) Symbiont-induced odorant binding proteins mediate insect host hematopoiesis. eLife 6:e19535CrossRefPubMedPubMedCentralGoogle Scholar
  12. Benton R, Vannice KS, Vosshall LB (2007) An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450:289–293CrossRefGoogle Scholar
  13. Binggeli O, Neyen C, Poidevin M, Lemaitre B (2014) Prophenoloxidase activation is required for survival to microbial infections in Drosophila. PLoS Pathog 10:e1004067CrossRefPubMedPubMedCentralGoogle Scholar
  14. Blandin S, Levashina EA (2004) Thioester-containing proteins and insect immunity. Mol Immunol 40:903–908CrossRefPubMedGoogle Scholar
  15. Blandin S, Shiao SH, Moita LF, Janse CJ, Waters AP, Kafatos FC, Levashina EA (2004) Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell 116:661–670CrossRefPubMedGoogle Scholar
  16. Blandin SA, Wang-Sattler R, Lamacchia M, Gagneur J, Lycett G, Ning Y, Levashina EA, Steinmetz LM (2009) Dissecting the genetic basis of resistance to malaria parasites in Anopheles gambiae. Science 326:147–150CrossRefPubMedPubMedCentralGoogle Scholar
  17. Boman HG, Faye I, Gudmundsson GH, Lee JY, Lidholm DQ (1991) Cell-free immunity in Cecropia. A model system for antibacterial proteins. Eur J Biochem 201:23–31CrossRefPubMedGoogle Scholar
  18. Bonnay F, Cohen-Berros E, Hoffmann M, Kim SY, Boulianne GL, Hoffmann JA, Matt N, Reichhart JM (2013) Big bang gene modulates gut immune tolerance in Drosophila. Proc Natl Acad Sci U S A 110:2957–2962CrossRefPubMedPubMedCentralGoogle Scholar
  19. Boppana S, Hillyer JF (2014) Hemolymph circulation in insect sensory appendages: functional mechanics of antennal accessory pulsatile organs (auxiliary hearts) in the mosquito Anopheles gambiae. J Exp Biol 217:3006–3014CrossRefPubMedGoogle Scholar
  20. Brandt JP, Ringstad N (2015) Toll-like receptor signaling promotes development and function of sensory neurons required for a C. elegans pathogen-avoidance behavior. Curr Biol 25:2228–2237CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cao Y, Chtarbanova S, Petersen AJ, Ganetzky B (2013) Dnr1 mutations cause neurodegeneration in Drosophila by activating the innate immune response in the brain. Proc Natl Acad Sci U S A 110:E1752–E1760CrossRefPubMedPubMedCentralGoogle Scholar
  22. Carthew RW, Agbu P, Giri R (2017) MicroRNA function in Drosophila melanogaster. Semin Cell Dev Biol 65:29–37CrossRefPubMedGoogle Scholar
  23. Chang CI, Ihara K, Chelliah Y, Mengin-Lecreulx D, Wakatsuki S, Deisenhofer J (2005) Structure of the ectodomain of Drosophila peptidoglycan-recognition protein LCa suggests a molecular mechanism for pattern recognition. Proc Natl Acad Sci U S A 102:10279–10284CrossRefPubMedPubMedCentralGoogle Scholar
  24. Choe KM, Werner T, Stöven S, Hultmark D, Anderson KV (2002) Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296:359–362CrossRefPubMedGoogle Scholar
  25. Clem RJ (2015) Viral IAPs, then and now. Semin Cell Dev Biol 39:72–79CrossRefPubMedGoogle Scholar
  26. Colinet D, Deleury E, Anselme C, Cazes D, Poulain J, Azema-Dossat C, Belghazi M, Gatti JL, Poirie M (2013) Extensive inter- and intraspecific venom variation in closely related parasites targeting the same host: the case of Leptopilina parasitoids of Drosophila. Insect Biochem Mol Biol 43:601–611CrossRefPubMedGoogle Scholar
  27. Cribb BW, Merritt DJ (2013) Chemoreception. In: Chapman RF, Simpson SJ, Douglas AE (eds) The insects: structure and function, vol 5. Cambridge University Press, Cambridge, pp 771–791Google Scholar
  28. Daigneault J, Klemetsaune L, Wasserman SA (2013) The IRAK homolog Pelle is the functional counterpart of IκB kinase in the Drosophila Toll pathway. PLoS One 8:e75150CrossRefPubMedPubMedCentralGoogle Scholar
  29. De Gregorio E, Spellman PT, Tzou P, Rubin GM, Lemaitre B (2002) The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J 21:2568–2579CrossRefPubMedPubMedCentralGoogle Scholar
  30. Dear TN, Boehm T, Keverne EB, Rabbitts TH (1991) Novel genes for potential ligand-binding proteins in subregions of the olfactory mucosa. EMBO J 10:2813–2819CrossRefPubMedPubMedCentralGoogle Scholar
  31. Dias FA, Gandara ACP, Queiroz-Barros FG, Oliveira RLL, Sorgine MHF, Braz GRC, Oliveira PL (2013) Ovarian dual oxidase (Duox) activity is essential for insect eggshell hardening and waterproofing. J Biol Chem 288:35058–35067CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ding SW (2010) RNA-based antiviral immunity. Nat Rev Immunol 10:632–644CrossRefPubMedGoogle Scholar
  33. El Chamy L, Leclerc V, Caldelari I, Reichhart JM (2008) Sensing of “danger signals” and pathogen-associated molecular patterns defines binary signaling pathways “upstream” of Toll. Nat Immunol 9:1165–1170CrossRefPubMedPubMedCentralGoogle Scholar
  34. Fernández-Hernández I, Scheenaard E, Pollarolo G, Gonzalez C (2016) The translational relevance of Drosophila in drug discovery. EMBO Rep 17:471–472CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ferrandon D, Imler JL, Hetru C, Hoffmann JA (2007) The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 7:862–874CrossRefPubMedGoogle Scholar
  36. Foley E, O’Farrell PH (2004) Functional dissection of an innate immune response by a genome-wide RNAi screen. PLoS Biol 2:e203CrossRefPubMedPubMedCentralGoogle Scholar
  37. Fraiture M, Baxter RHG, Steinert S, Chelliah Y, Frolet C, Quispe-Tintaya W, Hoffmann JA, Blandin SA, Levashina EA (2009) Two mosquito LRR proteins function as complement control factors in the TEP1-mediated killing of Plasmodium. Cell Host Microbe 5:273–284CrossRefPubMedGoogle Scholar
  38. Franc NC, Heitzler P, Ezekowitz RA, White K (1999) Requirement for croquemort in phagocytosis of apoptotic cells in Drosophila. Science 284:1991–1994CrossRefPubMedGoogle Scholar
  39. Galiana-Arnoux D, Dostert C, Schneemann A, Hoffmann JA, Imler JL (2006) Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila. Nat Immunol 7:590–597CrossRefPubMedGoogle Scholar
  40. Georgel P, Naitza S, Kappler C, Ferrandon D, Zachary D, Swimmer C, Kopczynski C, Duyk G, Reichhart JM, Hoffmann JA (2001) Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev Cell 1:503–514CrossRefPubMedGoogle Scholar
  41. Gobert V, Gottar M, Matskevich AA, Rutschmann S, Royet J, Belvin M, Hoffmann JA, Ferrandon D (2003) Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science 302:2126–2130CrossRefPubMedGoogle Scholar
  42. Gomez-Diaz C, Bargeton B, Abuin L, Bukar N, Reina JH, Bartoi T, Graf M, Ong H, Ulbrich MH, Masson JF, Benton R (2016) A CD36 ectodomain mediates insect pheromone detection via a putative tunnelling mechanism. Nat Commun 7:11866CrossRefPubMedPubMedCentralGoogle Scholar
  43. Gottar M, Gobert V, Michel T, Belvin M, Duyk G, Hoffmann JA, Ferrandon D, Royet J (2002) The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416:640–644CrossRefPubMedGoogle Scholar
  44. Gottar M, Gobert V, Matskevich AA, Reichhart JM, Wang C, Butt TM, Belvin M, Hoffmann JA, Ferrandon D (2006) Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127:1425–1437CrossRefPubMedPubMedCentralGoogle Scholar
  45. Herzog VA, Ameres SL (2015) Approaching the golden fleece a molecule at a time: biophysical insights into argonaute-instructed nucleic acid interactions. Mol Cell 59:4–7CrossRefPubMedGoogle Scholar
  46. Hillyer JF (2016) Insect immunology and hematopoiesis. Dev Comp Immunol 58:102–118CrossRefPubMedGoogle Scholar
  47. Hoffmann JA (2003) The immune response of Drosophila. Nature 426:33–38CrossRefPubMedGoogle Scholar
  48. Hoffmann JA, Hetru C (1992) Insect defensins: inducible antibacterial peptides. Immunol Today 13:411–415CrossRefPubMedGoogle Scholar
  49. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA (1999) Phylogenetic perspectives in innate immunity. Science 284:1313–1318CrossRefPubMedGoogle Scholar
  50. Hou CX, Qin GX, Liu T, Mei XL, Li B, Shen ZY, Guo XJ (2013) Differentially expressed genes in the cuticle and hemolymph of the silkworm, Bombyx mori, injected with the fungus Beauveria bassiana. J Insect Sci 13:138CrossRefPubMedPubMedCentralGoogle Scholar
  51. Imler JL, Zheng L (2004) Biology of Toll receptors: lessons from insects and mammals. J Leukoc Biol 75:18–26CrossRefPubMedGoogle Scholar
  52. Imler JL, Bulet P (2005) Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem Immunol Allergy 86:1–21PubMedGoogle Scholar
  53. Irving P, Troxler L, Heuer TS, Belvin M, Kopczynski C, Reichhart JM, Hoffmann JA, Hetru C (2001) A genome-wide analysis of immune responses in Drosophila. Proc Natl Acad Sci U S A 98:15119–15124CrossRefPubMedPubMedCentralGoogle Scholar
  54. Issa N, Guillaumot N, Lauret E, Matt N, Schaeffer-Reiss C, Van Dorsselaer A, Reichhart JM, Veillard F (2018) The circulating protease Persephone is an immune sensor for microbial proteolytic activities upstream of the Drosophila Toll pathway. Mol Cell 69:539–550CrossRefPubMedPubMedCentralGoogle Scholar
  55. Jang IH, Chosa N, Kim SH, Nam HJ, Lemaitre B, Ochiai M, Kambris Z, Brun S, Hashimoto C, Ashida M, Brey PT, Lee WJ (2006) A Spätzle-processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev Cell 10:45–55CrossRefPubMedGoogle Scholar
  56. Kaneko T, Yano T, Aggarwal K, Lim JH, Ueda K, Oshima Y, Peach C, Erturk-Hasdemir D, Goldman WE, Oh BH, Kurata S, Silverman N (2006) PGRP-LC and PGRP-LE have essential yet distinct functions in the drosophila immune response to monomeric DAP-type peptidoglycan. Nat Immunol 7:715–723CrossRefPubMedGoogle Scholar
  57. Karlikow M, Goic B, Mongelli V, Salles A, Schmitt C, Bonne I, Zurzolo C, Saleh MC (2016) Drosophila cells use nanotube-like structures to transfer dsRNA and RNAi machinery between cells. Sci Rep 6:27085CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kemp C, Imler JL (2009) Antiviral immunity in drosophila. Curr Opin Immunol 21:3–9CrossRefPubMedPubMedCentralGoogle Scholar
  59. Koch SI, Groh K, Vogel H, Hansson BS, Kleineidam CJ, Grosse-Wilde E (2013) Caste-specific expression patterns of immune response and chemosensory related genes in the leaf-cutting ant, Atta vollenweideri. PLoS One 8:e81518CrossRefPubMedPubMedCentralGoogle Scholar
  60. Kocks C, Cho JH, Nehme N, Ulvila J, Pearson AM, Meister M, Strom C, Conto SL, Hetru C, Stuart LM, Stehle T, Hoffmann JA, Reichhart JM, Ferrandon D, Rämet M, Ezekowitz RAB (2005) Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123:335–346CrossRefPubMedGoogle Scholar
  61. Koehbach J (2017) Structure-activity relationships of insect defensins. Front Chem 5:45. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Krzemień J, Dubois L, Makki R, Meister M, Vincent A, Crozatier M (2007) Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature 446:325–328CrossRefPubMedGoogle Scholar
  63. Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaitre B (2011) Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc Natl Acad Sci U S A 108:15966–15971CrossRefPubMedPubMedCentralGoogle Scholar
  64. Lanot R, Zachary D, Holder F, Meister M (2001) Postembryonic hematopoiesis in Drosophila. Dev Biol 230:243–257CrossRefPubMedGoogle Scholar
  65. Lazzaro BP (2015) Adenosine signaling and the energetic costs of induced immunity. PLoS Biol 13:e1002136CrossRefPubMedPubMedCentralGoogle Scholar
  66. Lee KA, Kim SH, Kim EK, Ha EM, You H, Kim B, Kim MJ, Kwon Y, Ryu JH, Lee WJ (2013) Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell 153:797–811CrossRefPubMedGoogle Scholar
  67. Legeai F, Gimenez S, Duvic B, Escoubas JM, Gosselin Grenet AS, Blanc F, Cousserans F, Séninet I, Bretaudeau A, Mutuel D, Girard PA, Monsempes C, Magdelenat G, Hilliou F, Feyereisen R, Ogliastro M, Volkoff AN, Jacquin-Joly E, d’Alencon E, Nègre N, Fournier P (2014) Establishment and analysis of a reference transcriptome for Spodoptera frugiperda. BMC Genomics 15:704Google Scholar
  68. Léger P, Lara E, Jagla B, Sismeiro O, Mansuroglu Z, Coppée JY, Bonnefoy E, Bouloy M (2013) Dicer-2- and Piwi-mediated RNA interference in Rift Valley fever virus-infected mosquito cells. J Virol 87:1631–1648CrossRefPubMedPubMedCentralGoogle Scholar
  69. Levashina EA, Langley E, Green C, Gubb D, Ashburner M, Hoffmann JA, Reichhart JM (1999) Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285:1917–1919CrossRefPubMedGoogle Scholar
  70. Levashina EA, Moita LF, Blandin S, Vriend G, Lagueux M, Kafatos FC (2001) Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104:709–718CrossRefPubMedGoogle Scholar
  71. Ligoxygakis P, Pelte N, Hoffmann JA, Reichhart JM (2002) Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297:114–116CrossRefPubMedGoogle Scholar
  72. Liu GX, Picimbon JF (2017) Bacterial origin of chemosensory odor-binding proteins. Gene Transl Bioinform 3:e1548Google Scholar
  73. Liu GX, Xuan N, Chu D, Xie HY, Fan ZX, Bi YP, Picimbon JF, Li YF, Qin YC, Zhong ST, Gao ZL, Pan WL, Wang GY, Rajashekar B (2014) Biotype expression and insecticide response of Bemisia tabaci chemosensory protein-1. Arch Insect Biochem Physiol 85:137–151CrossRefPubMedGoogle Scholar
  74. Liu GX, Ma HM, Xie YN, Xuan N, Xia G, Fan ZX, Rajashekar B, Arnaud P, Offmann B, Picimbon JF (2016) Biotype characterization, developmental profiling, insecticide response and binding property of Bemisia tabaci chemosensory proteins: role of CSP in insect defense. PLoS One 11:e0154706CrossRefPubMedPubMedCentralGoogle Scholar
  75. Liu GX, Arnaud P, Offmann B, Picimbon JF (2017) Genotyping and bio-sensing chemosensory proteins in insects. Sensors 17:1801CrossRefGoogle Scholar
  76. Lu A, Zhang Q, Zhang J, Yang B, Wu K, Xie W, Luan YX, Ling E (2014) Insect prophenoloxidase: the view beyond immunity. Front Physiol 5:252PubMedPubMedCentralGoogle Scholar
  77. Lu J, Sun PD (2012) The structure of the TLR5-flagellin complex: a new mode of pathogen detection, conserved receptor dimerization for signaling. Sci Signal 5:pe11CrossRefPubMedPubMedCentralGoogle Scholar
  78. Mandal L, Martinez-Agosto JA, Evans CJ, Hartenstein V, Banerjee U (2007) A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature 446:320–324CrossRefPubMedPubMedCentralGoogle Scholar
  79. McIlroy G, Foldi I, Aurikko J, Wentzell JS, Lim MA, Fenton JC, Gay NJ, Hidalgo A (2013) Toll-6 and Toll-7 function as neurotrophin receptors in the Drosophila melanogaster CNS. Nat Neurosci 16:1248–1256CrossRefPubMedPubMedCentralGoogle Scholar
  80. Medzhitov R, Janeway CA (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296:298–300CrossRefGoogle Scholar
  81. Misof B et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767CrossRefGoogle Scholar
  82. Morazzani EM, Wiley MR, Murreddu MG, Adelman ZN, Myles KM (2012) Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma. PLoS Pathog 8:e1002470CrossRefPubMedPubMedCentralGoogle Scholar
  83. Nainu F, Tanaka Y, Shiratsuchi A, Nakanishi Y (2015) Protection of insects against viral infection by apoptosis-dependent phagocytosis. J Immunol Baltim Md 1950 195:5696–5706Google Scholar
  84. Naitza S, Rossé C, Kappler C, Georgel P, Belvin M, Gubb D, Camonis J, Hoffmann JA, Reichhart JM (2002) The Drosophila immune defense against gram-negative infection requires the death protein dFADD. Immunity 17:575–581CrossRefPubMedGoogle Scholar
  85. Navajas M, Migeon A, Alaux C, Martin-Magniette M, Robinson G, Evans J, Cros-Arteil S, Crauser D, Le Conte Y (2008) Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genomics 9:301CrossRefPubMedPubMedCentralGoogle Scholar
  86. Nonaka M (2000) Evolution of the complement system. Curr Top Microbiol Immunol 248:37–50PubMedGoogle Scholar
  87. Obbard DJ, Callister DM, Jiggins FM, Soares DC, Yan G, Little TJ (2008) The evolution of TEP1, an exceptionally polymorphic immunity gene in Anopheles gambiae. BMC Evol Biol 8:274CrossRefPubMedPubMedCentralGoogle Scholar
  88. Okuda K, Tong M, Dempsey B, Moore KJ, Gazzinelli RT, Silverman N (2016) Leishmania amazonensis engages CD36 to drive parasitophorous vacuole maturation. PLoS Pathog 12:e1005669CrossRefPubMedPubMedCentralGoogle Scholar
  89. Oliveira DS, Brito NF, Nogueira FCS, Moreira MF, Leal WS, Soares MR, Melo ACA (2017) Proteomic analysis of the kissing bug Rhodnius prolixus antenna. J Insect Physiol 100:108–118Google Scholar
  90. Paquette N, Broemer M, Aggarwal K, Chen L, Husson M, Ertürk-Hasdemir D, Reichhart JM, Meier P, Silverman N (2010) Caspase-mediated cleavage, IAP binding, and ubiquitination: linking three mechanisms crucial for Drosophila NF-kappaB signaling. Mol Cell 37:172–182CrossRefPubMedPubMedCentralGoogle Scholar
  91. Paré AC, Vichas A, Fincher CT, Mirman Z, Farrell DL, Mainieri A, Zallen JA (2014) A positional Toll receptor code directs convergent extension in Drosophila. Nature 515:523–527CrossRefPubMedPubMedCentralGoogle Scholar
  92. Paro S, Imler JL, Meignin C (2015) Sensing viral RNAs by Dicer/RIG-I like ATPases across species. Curr Opin Immunol 32:106–113CrossRefPubMedGoogle Scholar
  93. Pass G (1985) Gross and fine structure of the antennal circulatory organ in cockroaches (Blattodea, Insecta). J Morphol 185:255–268CrossRefPubMedGoogle Scholar
  94. Patil RS, Ghomade V, Deshpande MV (2000) Chitinolytic enzymes: an exploration. Enzym Microb Technol 26:473–483CrossRefGoogle Scholar
  95. Petit M, Mongelli V, Frangeul L, Blanc H, Jiggins F, Saleh MC (2016) piRNA pathway is not required for antiviral defense in Drosophila melanogaster. Proc Natl Acad Sci U S A 113:E4218–E4227CrossRefPubMedPubMedCentralGoogle Scholar
  96. Petkau K, Fast D, Duggal A, Foley E (2016) Comparative evaluation of the genomes of three common Drosophila-associated bacteria. Biol Open 5:1305–1316CrossRefPubMedPubMedCentralGoogle Scholar
  97. Philips JA, Rubin EJ, Perrimon N (2005) Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection. Science 309:1251–1253CrossRefGoogle Scholar
  98. Picimbon JF (2003) Biochemistry and evolution of CSP and OBP proteins. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-The biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, SanDiego/London, pp 539–566CrossRefGoogle Scholar
  99. Picimbon JF (2014) Renaming Bombyx mori chemosensory proteins. Int J Bioorg Chem Mol Biol 2e:1–4Google Scholar
  100. Picimbon JF, Dietrich K, Breer H, Krieger J (2000a) Chemosensory proteins of Locusta migratoria (Orthoptera: Acrididae). Insect Biochem Mol Biol 30:233–241CrossRefPubMedGoogle Scholar
  101. Picimbon JF, Dietrich K, Angeli S, Scaloni A, Krieger J, Breer H, Pelosi P (2000b) Purification and molecular cloning of chemosensory proteins from Bombyx mori. Arch Insect Biochem Physiol 44:120–129CrossRefPubMedGoogle Scholar
  102. Picimbon JF, Dietrich K, Krieger J, Breer H (2001) Identity and expression pattern of chemosensory proteins in Heliothis virescens (Lepidoptera, Noctuidae). Insect Biochem Mol Biol 31:1173–1181CrossRefPubMedGoogle Scholar
  103. Pradel E, Zhang Y, Pujol N, Matsuyama T, Bargmann CI, Ewbank JJ (2007) Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proc Natl Acad Sci U S A 104:2295–2300CrossRefPubMedPubMedCentralGoogle Scholar
  104. Richard FJ, Aubert A, Grozinger CM (2008) Modulation of social interactions by immune stimulation in honey bee, Apis mellifera, workers. BMC Biol 6:50CrossRefPubMedPubMedCentralGoogle Scholar
  105. Ringo J, Sharon G, Segal D (2011) Bacteria-induced sexual isolation in Drosophila. Fly (Austin) 5:310–315CrossRefGoogle Scholar
  106. Rogers ME, Sun M, Lerner MR, Vogt RG (1997) Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the CD36 family of membrane proteins. J Biol Chem 272:14792–14799CrossRefPubMedGoogle Scholar
  107. Roignant JY, Carré C, Mugat B, Szymczak D, Lepesant JA, Antoniewski C (2003) Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA N Y N 9:299–308CrossRefGoogle Scholar
  108. Royet J, Gupta D, Dziarski R (2011) Peptidoglycan recognition proteins: modulators of the microbiome and inflammation. Nat Rev Immunol 11:837–851CrossRefPubMedGoogle Scholar
  109. Rutschmann S, Jung AC, Hetru C, Reichhart JM, Hoffmann JA, Ferrandon D (2000) The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity 12:569–580CrossRefGoogle Scholar
  110. Sabatier L, Jouanguy E, Dostert C, Zachary D, Dimarcq JL, Bulet P, Imler JL (2003) Pherokine-2 and -3: two Drosophila molecules related to pheromone/odor-binding proteins induced by viral and bacterial infections. Eur J Biochem FEBS 270:3398–3407CrossRefGoogle Scholar
  111. Saleh MC, Tassetto M, van Rij RP, Goic B, Gausson V, Berry B, Jacquier C, Antoniewski C, Andino R (2009) Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature 458:346–350CrossRefPubMedPubMedCentralGoogle Scholar
  112. Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci U S A 107:20051–20056CrossRefPubMedPubMedCentralGoogle Scholar
  113. Shim J, Mukherjee T, Mondal BC, Liu T, Young GC, Wijewarnasuriya DP, Banerjee U (2013) Olfactory control of blood progenitor maintenance. Cell 155:1141–1153CrossRefPubMedGoogle Scholar
  114. Shokal U, Eleftherianos I (2017) Evolution and function of thioester-containing proteins and the complement system in the innate immune response. Front Immunol 8:759Google Scholar
  115. Sim S, Ramirez JL, Dimopoulos G (2012) Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior. PLoS Pathog 8:e1002631CrossRefPubMedPubMedCentralGoogle Scholar
  116. Siomi MC, Miyoshi T, Siomi H (2010) piRNA-mediated silencing in Drosophila germlines. Semin Cell Dev Biol 21:754–759CrossRefPubMedGoogle Scholar
  117. Soldano A, Alpizar YA, Boonen B, Franco L, López-Requena A, Liu G, Mora N, Yaksi E, Voets T, Vennekens R, Hassan BA, Talavera K (2016) Gustatory-mediated avoidance of bacterial lipopolysaccharides via TRPA1 activation in Drosophila. eLife 5:e13133CrossRefPubMedPubMedCentralGoogle Scholar
  118. Steiner H (2004) Peptidoglycan recognition proteins: on and off switches for innate immunity. Immunol Rev 198:83–96CrossRefPubMedGoogle Scholar
  119. Steiner H, Hultmark D, Engström A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248CrossRefPubMedGoogle Scholar
  120. Stensmyr MC, Dweck HKM, Farhan A, Ibba I, Strutz A, Mukunda L, Linz J, Grabe V, Steck K, Lavista-Llanos S, Wicher D, Sachse S, Knaden M, Becher PG, Seki Y, Hansson BS (2012) A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151:1345–1357CrossRefPubMedGoogle Scholar
  121. Stoven S, Silverman N, Junell A, Hedengren-Olcott M, Erturk D, Engstrom Y, Maniatis T, Hultmark D (2003) Caspase-mediated processing of the Drosophila NF-kappaB factor Relish. Proc Natl Acad Sci U S A 100:5991–5996CrossRefPubMedPubMedCentralGoogle Scholar
  122. Sun H, Towb P, Chiem DN, Foster BA, Wasserman SA (2004) Regulated assembly of the Toll signaling complex drives Drosophila dorsoventral patterning. EMBO J 23:100–110CrossRefPubMedGoogle Scholar
  123. Tzou P, Ohresser S, Ferrandon D, Capovilla M, Reichhart JM, Lemaitre B, Hoffmann JA, Imler JL (2000) Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13:737–748CrossRefPubMedGoogle Scholar
  124. Valanne S, Wang JH, Rämet M (2011) The Drosophila Toll signaling pathway. J Immunol 186:649–656CrossRefPubMedPubMedCentralGoogle Scholar
  125. van Rij RP, Saleh MC, Berry B, Foo C, Houk A, Antoniewski C, Andino R (2006) The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev 20:2985–2995CrossRefPubMedPubMedCentralGoogle Scholar
  126. Venu I, Durisko Z, Xu J, Dukas R (2014) Social attraction mediated by fruit flies’ microbiome. J Exp Biol 217:1346–1352CrossRefPubMedGoogle Scholar
  127. Vilmos P, Kurucz E (1998) Insect immunity: evolutionary roots of the mammalian innate immune system. Immunol Lett 62:59–66CrossRefPubMedGoogle Scholar
  128. Vodovar N, Bronkhorst AW, van Cleef KWR, Miesen P, Blanc H, van Rij RP, Saleh MC (2012) Arbovirus-derived piRNAs exhibit a ping-pong signature in mosquito cells. PLoS One 7:e30861CrossRefPubMedPubMedCentralGoogle Scholar
  129. Wang XH, Aliyari R, Li WX, Li HW, Kim K, Carthew R, Atkinson P, Ding SW (2006) RNA interference directs innate immunity against viruses in adult Drosophila. Science 312:452–454CrossRefPubMedPubMedCentralGoogle Scholar
  130. Ward A, Hong W, Favaloro V, Luo L (2015) Toll receptors instruct axon and dendrite targeting and participate in synaptic partner matching in a Drosophila olfactory circuit. Neuron 85:1013–1028CrossRefPubMedPubMedCentralGoogle Scholar
  131. Weber ANR, Tauszig-Delamasure S, Hoffmann JA, Lelièvre E, Gascan H, Ray KP, Morse MA, Imler JL, Gay NJ (2003) Binding of the Drosophila cytokine Spätzle to Toll is direct and establishes signaling. Nat Immunol 4:794–800CrossRefPubMedGoogle Scholar
  132. Xuan N, Guo X, Xie HY, Lou QN, Bo LX, Liu GX, Picimbon JF (2015) Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins. Insect Sci 22:203–219CrossRefPubMedGoogle Scholar
  133. Yano T, Mita S, Ohmori H, Oshima Y, Fujimoto Y, Ueda R, Takada H, Goldman WE, Fukase K, Silverman N, Yoshimori T, Kurata S (2008) Autophagic control of listeria through intracellular innate immune recognition in Drosophila. Nat Immunol 9:908–916CrossRefPubMedPubMedCentralGoogle Scholar
  134. Yoshida H, Ochiai M, Ashida M (1986) Beta-1,3-glucan receptor and peptidoglycan receptor are present as separate entities within insect prophenoloxidase activating system. Biochem Biophys Res Commun 141:1177–1184CrossRefPubMedGoogle Scholar
  135. Zhang ZT, Zhu SY (2009) Drosomycin, an essential component of antifungal defence in Drosophila. Insect Mol Biol 18:549–556CrossRefPubMedGoogle Scholar
  136. Zhao Y, Li H, Miao X (2015) Proteomic analysis of silkworm antennae. J Chem Ecol 41:1037–1042CrossRefPubMedGoogle Scholar
  137. Zhu B, Pennack JA, McQuilton P, Forero MG, Mizuguchi K, Sutcliffe B, Gu CJ, Fenton JC, Hidalgo A (2008) Drosophila neurotrophins reveal a common mechanism for nervous system formation. PLoS Biol 6:e284CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CNRS-UPR9022Institut de Biologie Moléculaire et CellulaireStrasbourgFrance
  2. 2.Faculté des Sciences de la VieUniversité de StrasbourgStrasbourgFrance

Personalised recommendations