Odorant-Binding Proteins in Taste System: Putative Roles in Taste Sensation and Behavior

  • Mamiko OzakiEmail author


Animals recognize chemical environment via specific olfactory and taste sensory systems. At the most peripheral stage of the chemical environment recognition, lipophilic chemicals coming into the receptor organs as olfactory and/or taste stimulants need to interact with carrier proteins in the hydrophilic receptor ringer lymph surrounding receptor membranes of sensory neurons. They can otherwise neither reach the receptor membranes nor bind the receptor proteins. Odorant-binding proteins (OBPs) or OBP-related proteins have been reported in the taste receptor organs of various insect species. The insect taste receptor organs are sensory units called taste sensilla, which possess a set of gustatory receptor neurons (GRNs) responsible for fundamental tastes like sweetness, bitterness, etc., and a few types of auxiliary cells. It has been reported that the OBPs are required mainly for bitter taste sensation or contact chemical detection of noxious compounds. Probably, the peri-receptor system involving OBPs in the taste sensilla have developed with the ecological background of plant-herbivore interactions. Plants synthesize noxious or toxic compounds against being eaten by herbivores, and herbivores avoid them via bitter taste detection against being poisoned by plants. Considering behavioral effects of bitter or noxious taste sensation in insects, here we digest about OBPs in the taste systems with their putative roles influencing feeding, courtship or oviposition, etc.


  1. Abraham D, Löfstedt C, Picimbon JF (2005) Molecular evolution and characterization of pheromone binding protein genes in Agrotis moths. Insect Biochem Mol Biol 35:1100–1111PubMedGoogle Scholar
  2. Antony B, Soffan A, Jakše J, Abdelazim MM, Aldosari SA, Aldawood AS, Pain A (2016) Identification of the genes involved in odorant reception and detection in the palm weevil Rhynchophorus ferrugineus, an important quarantine pest, by antennal transcriptome analysis. BMC Genomics 17:69CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bernays EA, Chapman RF (2012) Perspectives in chemoreception and behavior. Springer, New York, ebookGoogle Scholar
  4. Billeter JC, Levine J (2013) Who is he and what he to you? Recognition in Drosophila melanogaster. Curr Opn Neurobiol 23:17–23CrossRefGoogle Scholar
  5. Bray S, Amrein H (2003) A putative Drosophila pheromone receptor expressed in male-specific taste neurons is required for efficient courtship. Neuron 39:1019–1029CrossRefPubMedGoogle Scholar
  6. Briscoe AD, Macias-Munoz A, Kozak KM, Walters JR, Yuan F, Jamie GA, Martin SH, Dasmahapatra KK, Ferguson LC, Mallet J, Jacquin-Joly E, Jiggins CD (2013) Female drives behaviour expression and evolution of gustatory receptors in butterflies. PLoS One 9:e1003620Google Scholar
  7. Cameron P, Hiroi M, Ngai J, Scott K (2010) The molecular basis for water taste in Drosophila. Nature 465:91–95CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chapman RF, Bernays EA, Stoffolano JG Jr (1987) Perspectives in chemoreception and behavior. Springer-Verlag, Berlin, p 207CrossRefGoogle Scholar
  9. Charlu S, Wisotsky Z, Medina A, Dahanukar A (2013) Acid sensing by sweet and bitter taste neurons in Drosophila melanogaster. Nat Commun 4:2042CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chen Z, Wang Q, Wang Z (2010) The amiloride-sensitive epithelial Na+ channel PPK28 is essential for Drosophila gustatory water reception. J Neurosci 30:6247–6252CrossRefPubMedGoogle Scholar
  11. Cordier R (1964) Sensory cells. In: Brachet J, Mirsky AE (eds) The cell: biochemistry, physiology, morphology, vol VI. Academic, New York, pp 313–386CrossRefGoogle Scholar
  12. Dahanukar A, Foster K, van der Goes van Naters WM, Carlson JR (2001) A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nat Neurosci 4:1182–1186CrossRefPubMedGoogle Scholar
  13. Detier VG (1976) The hungry fly: a physiological study of the behavior associated with feeding. Harvard University Press, Cambridge, MA, p 512Google Scholar
  14. Dippel S, Oberhofer G, Kahnt J, Gerischer L, Opitz L, Schachtner J, Stanke M, Schütz S, Wimmer EA, Angeli S (2014) Tissue-specific transcriptomics, chromosomal localization, and phylogeny of chemosensory and odorant binding proteins from the red flour beetle Tribolium castaneum reveal subgroup specificities for olfaction or more general functions. Genomics 15:1141PubMedGoogle Scholar
  15. Dunipace L, Meister S, McNealy C, Amrein H (2001) Spatially restricted expression of candidate taste receptors in the Drosophila gustatory system. Curr Biol 11:822–835CrossRefPubMedGoogle Scholar
  16. Ejima A, Griffith LC (2007) Measurement of courtship behavior in Drosophila. Cold Spring Harb Protoc.
  17. Fan P, Manoli DS, Ahmed OM, Chen Y, Agarwal N, Kwong S, Cai AG, Neitz J, Renslo A, Baker BS, Shah NM (2013) Genetic and neural mechanisms that inhibit Drosophila from mating with other species. Cell 154:89–102CrossRefPubMedGoogle Scholar
  18. Fernández MP, Kravitz EA (2013) Aggression and courtship in Drosophila; Pheromonal communication and sex recognition. J Comp Physiol A 199:1065–1076CrossRefGoogle Scholar
  19. Fischler W, Kong P, Marella S, Scott K (2007) The detection of carbonation by the Drosophila gustatory system. Nature 448:1054–1057CrossRefGoogle Scholar
  20. Forêt S, Maleszka R (2006) Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res 16:1404–1413CrossRefPubMedPubMedCentralGoogle Scholar
  21. Freeman BC, Beattie GA (2008) An overview of plant defenses against pathogens and herbivores. Plant Health Instr.
  22. French AS, Sellier MJ, Moutaz AA, Guigue A, Chabaud MA, Reeb PD, Mitra A, Grau Y, Soustelle L, Marion-Poll F (2015) Dual mechanism for bitter avoidance in Drosophila. J Neurosci 35:9542–9543CrossRefGoogle Scholar
  23. Fujikawa K, Seno K, Ozaki M (2006) A novel Takeout-like protein expressed in the taste and olfactory organs of the blowfly, Phormia regina. FEBS J 273:4311–4321CrossRefPubMedGoogle Scholar
  24. Galindo K, Smith DP (2001) A large family of divergent Drosophila odorant-binding proteins expressed in gustatory and olfactory sensilla. Genetics 159:1059–1072PubMedPubMedCentralGoogle Scholar
  25. Gong DP, Zhang HJ, Zhao P, Xia QY, Xian ZH (2009) The Odorant binding protein gene family from the genome of silkworm, Bombyx mori. BMC Genomics 10:332CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hallem EA, Dahanukar A, Carlson JR (2006) Insect odor and taste receptors. Annu Rev Entomol 51:113–135CrossRefPubMedGoogle Scholar
  27. Harris N, Braiser DJ, Dickman DK, Fetter RD, Tong A, Davis GW (2015) The innate immune receptor PGRP-LC controls presynaptic homeostatic plasticity. Neuron 88:1157–1164CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hekmat-Scafe DS, Scafe CR, McKinney AJ, Tanouye MA (2002) Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res 12:1357–1369CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hiroi M, Marion-Poll F, Tanimura T (2002) Differentiated response to sugars among labellar chemosensilla in Drosophila. Zool Sci 19:1009–1018CrossRefPubMedGoogle Scholar
  30. Hiroi M, Meunier N, Marion-Poll F, Tanimura T (2004) Two antagonistic gustatory receptor neurons responding to sweet-salty and bitter taste in Drosophila. Dev Biol 61:333–342Google Scholar
  31. Hodgson ES, Lettvin JY, Roeder KD (1955) The physiology of a primary chemoreceptor unit. Science 122:417–418CrossRefPubMedGoogle Scholar
  32. Jallon JM (1984) A few chemical words exchanged by Drosophila during courtship and mating. Behav Genet 14:441–478CrossRefPubMedGoogle Scholar
  33. Jeong YT, Shim J, Oh SR, Yoon HI, Kim CH, Moon SJ (2013) An odorant-binding protein required for suppression of sweet taste by bitter chemicals. Neuron 79:725–737CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jones CD (1998) The genetic basis of Drosophila sechellia’s resistance to a host plant toxin. Genetics 149:1899–1908PubMedPubMedCentralGoogle Scholar
  35. Kim H, Kirkhar C, Scott K (2017) Long-range projection neurons in the taste circuit of Drosophila. eLife 6:e23386Google Scholar
  36. Koganezawa M, Shimada I (2002) Novel odorant-binding proteins expressed in the taste tissue of the fly. Chem Senses 27:319–332CrossRefPubMedGoogle Scholar
  37. Lacaille F, Hiroi M, Twele R, Inoshita T, Umemoto D, Manière G, Marion-Poll F, Ozaki M, Francke W, Cobb M, Everaerts C, Tanimura T, Ferveur JF (2007) An inhibitory sex pheromone tastes bitter for Drosophila males. PLoS One 2:e661CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lee Y, Moon SJ, Montell C (2009) Multiple gustatory receptors required for the caffeine response in Drosophila. Proc Natl Acad Sci U S A 106:4495–4500CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ling F, Dahanukar A, Weiss LA, Kwon JY, Carlson JR (2014) The molecular and cellular basis of taste coding in the legs of Drosophila. J Neurosci 34:7148–7164CrossRefPubMedPubMedCentralGoogle Scholar
  40. Liscia A, Solari P (2000) Bitter taste recognition in the blowfly: electrophysiological and behavioral evidence. Physiol Behav 70:61–65CrossRefPubMedGoogle Scholar
  41. Ma L, Li ZQ, Bian L, Cai XM, Luo ZX, Zhang YJ, Chen ZM (2016) Identification and comparative study of chemosensory genes related to host selection by legs transcriptome analysis in the tea geometrid Ectropis obliqua. PLoS One 11:e0149591CrossRefPubMedPubMedCentralGoogle Scholar
  42. Maeda T, Tamotsu S, Iwasaki M, Nisimura T, Shimohigashi M, Hojo MK, Ozaki M (2012) Neuronal projections and putative interaction of multimodal inputs in the subesophageal ganglion in the blowfly, Phormia regina. Chem Senses 39:391–401CrossRefGoogle Scholar
  43. Maeda T, Tamotsu M, Yamaoka R, Ozaki M (2015) Effects of floral scents and their dietary experiences on the feeding preference in the blowfly, Phormia regina. Front Integr Neurosci 9:59CrossRefPubMedPubMedCentralGoogle Scholar
  44. Marella S, Fischler W, Kong P, Asgarian S, Rueckert E, Scott K (2006) Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49:285–295CrossRefGoogle Scholar
  45. Matsuo T (2007) Rapid evolution of two odorant-binding protein genes, Obp567d and Obp57e, in the Drosophila melanogaster species group. Genetics 178:1061–1072CrossRefGoogle Scholar
  46. Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y (2007) Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol 5:e118CrossRefPubMedPubMedCentralGoogle Scholar
  47. McBride CS (2007) Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia. Proc Natl Acad Sci U S A 104:4996–5001CrossRefPubMedPubMedCentralGoogle Scholar
  48. McBride CS, Arguello JR (2007) Five Drosophila genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily. Genetics 177:1395–1416CrossRefPubMedPubMedCentralGoogle Scholar
  49. McKenna MP, Hekmat-Scafe DS, Gaines P, Carlson JR (1994) Putative Drosophila pheromone-binding proteins expressed in a subregion of the olfactory system. J Biol Chem 269:16340–16347PubMedGoogle Scholar
  50. McKenzie SK, Oxley PR, Kronauer DJC (2014) Comparative genomics and transcriptomics in ants provide new insights into the evolution and function of odorant binding and chemosensory proteins. BMC Genomics 15:718CrossRefPubMedPubMedCentralGoogle Scholar
  51. Meunier N, Marion-Poll F, Rospars JP, Tanimura T (2003) Peripheral coding of bitter taste in Drosophila. J Neurobiol 56:139–152CrossRefPubMedGoogle Scholar
  52. Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450CrossRefPubMedGoogle Scholar
  53. Miyazaki T, Ito K (2010) Neural architecture of the primary gustatory center of Drosophila melanogaster visualized with GAL4 and LexA enhancer-trap systems. J Comp Neurol 518:4147–4181CrossRefPubMedGoogle Scholar
  54. Montell C (2009) A taste of the Drosophila gustatory receptor. Curr Opin Neurobiol 19:345–353CrossRefPubMedPubMedCentralGoogle Scholar
  55. Moon SJ, Kottgen M, Jiao Y, Xu H, Montell C (2006) A taste receptor required for the caffeine response in vivo. Curr Biol 16:1812–1817CrossRefPubMedGoogle Scholar
  56. Moon SJ, Lee Y, Jiao Y, Montell C (2009) A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Curr Biol 19:1623–1627CrossRefPubMedPubMedCentralGoogle Scholar
  57. Nishimura A, Ishida Y, Takahashi A, Okamoto H, Sakabe M, Itoh M, Takano-Shimizu T, Ozaki M (2012) Starvation-induced elevation of taste responsiveness and expression of a sugar taste receptor gene in Drosophila melanogaster. J Neurogenet 26:206–215CrossRefPubMedGoogle Scholar
  58. Nisimura T, Seto A, Nakamura K, Miyama M, Nagao T, Tamotsu S, Yamaoka R, Ozaki M (2005) Experiential effects of appetitive and nonappetitive odors on feeding behavior in the blowfly, Phormia regina: a putative role for tyramine in appetite regulation. J Neurosci 25:7507–7516CrossRefPubMedGoogle Scholar
  59. Ozaki M, Tominaga Y (1999) IV contact chemoreceptors. In: Eguchi E, Tominaga Y (eds) Atlas of arthropod sensory receptors. Springer, Tokyo, pp 143–154Google Scholar
  60. Ozaki M, Morisaki K, Idei W, Ozaki K, Tokunaga F (1995) A putative lipophilic stimulant carrier protein commonly found in the taste and olfactory systems A unique member of the pheromone-binding protein superfamily. Eur J Biochem 230:298–308CrossRefPubMedGoogle Scholar
  61. Ozaki M, Takahara T, Kawahara Y, Wada-Katsumata A, Seno K, Amakawa T, Yamaoka R, Nakamura T (2003) Perception of noxious compounds by contact chemoreceptors of the blowfly, Phormia regina: putative role of an odorant-binding protein. Chem Senses 28:349–359CrossRefPubMedGoogle Scholar
  62. Pavlou HJ, Goodwin SF (2013) Courtship behavior in Drosophila melanogaster: towards a ‘courtship connectome. Curr Opin Neurobiol 23:76–83CrossRefPubMedPubMedCentralGoogle Scholar
  63. Perry JC (2011) Mating stimulates female feeding: testing the implications for the evolution of nuptial gifts. J Evol Biol 24:1727–1736CrossRefPubMedGoogle Scholar
  64. Picimbon JF (2003) Evolution and biochemistry of OBP and CSP proteins. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-the biosynthesis and detection of pheromones and plant volatiles. SanDiego/London, pp 385–431Google Scholar
  65. Picimbon JF, Gadenne C (2002) Evolution of noctuid pheromone binding proteins: identification of PBP in the black cutworm moth, Agrotis ipsilon. Insect Biochem Mol Biol 32:839–846CrossRefPubMedGoogle Scholar
  66. Pikielny CW, Hasan G, Rouyer F, Rosbash M (1994) Members of a family of Drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron 12:35–49CrossRefPubMedGoogle Scholar
  67. Raffa KF (2014) Terpenes tell different tales at different scales: glimpses into the chemical ecology of conifer – bark beetle – microbial interactions. J Chem Ecol 40:1–20CrossRefPubMedGoogle Scholar
  68. Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 16:1395–1403CrossRefPubMedPubMedCentralGoogle Scholar
  69. Sánchez-Gracia A, Vieira FG, Rozas J (2009) Molecular evolution of the major chemosensory gene families in insects. Heredity 103:208–216Google Scholar
  70. Scott K, Brady R, Cravchik A, Morozov P, Rzhetsky A, Zuker C, Axel R (2001) A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104:661–673CrossRefGoogle Scholar
  71. Shanbhag S, Park SK, Pikielny C, Steinbrecht RA (2001) Gustatory organs of Drosophila melanogaster: fine structure and expression of the putative odorant-binding protein PBPRP2. Cell Tissue Res 304:423–437CrossRefPubMedGoogle Scholar
  72. Shimaji K, Maeda T, Ozaki M, Yoshida H, Ohkawa Y, Sato T, Suyama M, Masamitsu Yamaguchi M (2017) Histone methyltransferase G9a is a key regulator of the starvation-induced behaviors in Drosophila melanogaster. Sci Rep 7:14763CrossRefPubMedPubMedCentralGoogle Scholar
  73. Shorter JR, Dembeck LM, Everett LJ, Morozova TV, Arya GH, Turlapati L, St. Armour GE, Schal C, Mackay TFC, Anholt RRH (2016) Obp56h modulates mating behavior in Drosophila melanogaster. G3 (Bethesda) 6:3335–3342CrossRefGoogle Scholar
  74. Slone J, Daniels J, Amrein H (2007) Sugar receptors in Drosophila. Curr Biol 17:1809–1816CrossRefPubMedPubMedCentralGoogle Scholar
  75. Steinbrecht RA (1999) V olfactory receptors. In: Eguchi E, Tominaga Y (eds) Atlas of arthropod sensory receptors. Springer, Tokyo, pp 155–176Google Scholar
  76. Steinbrecht RA, Ozaki M, Ziegelberger G (1992) Immunocytochemical localization of pheromone-binding protein in moth antennae. Cell Tissue Res 282:203–302CrossRefGoogle Scholar
  77. Stocker RF (1994) The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res 275:3–26CrossRefPubMedGoogle Scholar
  78. Sun L, Wei Y, Zhang DD, Ma XY, Yong X, Zhang YN, Yang XM, Xiao Q, Guo YY, Zhan YJ (2016) The mouthparts enriched odorant binding protein 11 of the alfalfa plant bug Adelphocoris lineolatus displays a preferential binding behavior to host plant secondary metabolites. Front Physiol 7:21CrossRefGoogle Scholar
  79. Swarup S, Morozova TV, Sridhar S, Nokes M, Anholt RRH (2014) Modulation of feeding behavior by odorant-binding proteins in Drosophila melanogaster. Chem Senses 39:125–132CrossRefPubMedGoogle Scholar
  80. Thistle R, Cameron P, Ghorayshi A, Dennison L, Scott K (2012) Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell 149:1140–1151Google Scholar
  81. Thorne N, Chromey C, Bray S, Amrein H (2004) Taste perception and coding in Drosophila. Curr Biol 14:1065–1079CrossRefGoogle Scholar
  82. Thorne N, Bray S, Hubert A (2005) Function and expression of the Drosophila Gr Genes in the perception of sweet, bitter and pheromone compounds. Chem Senses 30:270–272CrossRefGoogle Scholar
  83. Ueno K, Ohta M, Morita H, Mikuni Y, Nakajima S, Yamamoto K, Isono K (2001) Trehalose sensitivity in Drosophila correlates with mutations in and expression of the gustatory receptor gene Gr5a. Curr Biol 11:1451–1455CrossRefPubMedGoogle Scholar
  84. Vieira FG, Rozas J (2007) Comparative genomics of the odorant-binding and chemosensory protein gene families across the arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol 8:476–490CrossRefGoogle Scholar
  85. Vogt RG (2002) Odorant binding protein homologues of the malaria mosquito Anopheles gambiae; possible orthologues of the OS-F OBPs of Drosophila melanogaster. J Chem Ecol 11:29–36Google Scholar
  86. Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163CrossRefGoogle Scholar
  87. Vogt RG, Köhne AC, Dubnau JT, Prestwich GD (1989) Expression of pheromone binding proteins during antennal development in the gypsy moth Lymantria dispar. J Neurosci 9:3332–3346CrossRefPubMedGoogle Scholar
  88. Vogt RG, Rybczynski R, Lerner MR (1991) Molecular cloning and sequencing of general odorant binding protein GOBP1 and GOBP2 from tobacco hawk moth, Manduca sexta: comparisons with other insect OBPs and their signal peptides. J Neurosci 11:2972–2984CrossRefPubMedGoogle Scholar
  89. Vosshall LB, Hansson BS (2011) A unified nomenclature system for the insect olfactory coreceptor. Chem Senses 36:497–498CrossRefPubMedGoogle Scholar
  90. Vosshall LB, Stocker RF (2007) Molecular architecture of smell and taste in Drosophila. Annu Rev Neurosci 30:505–533CrossRefPubMedGoogle Scholar
  91. Wada-Katsumata A, Ozaki M, Yokohari F (2009) Behavioral and electrophysiological studies on the sexually biased synergism between oligosaccharides and phospholipids in gustatory perception of nuptial secretion by the German cockroach. J Insect Physiol 55:742–750CrossRefPubMedGoogle Scholar
  92. Wang N, Wang NX, Niu LM, Bian SN, Xiao JH, Huang DW (2014) Odorant-binding protein (OBP) genes affect host specificity in a fig-pollinator mutualistic system. Insect Mol Biol 23:621–631CrossRefPubMedGoogle Scholar
  93. Wang Z, Singhvi A, Kong P, Scott K (2004) Taste representations in the Drosophila brain. Cell 117:981–991CrossRefGoogle Scholar
  94. Wanner KW, Robertson HM (2008) The gustatory receptor family in the silkworm moth Bombyx mori is characterized by a large expansion of a single lineage of putative bitter receptors. Insect Mol Biol 17:621–629CrossRefPubMedGoogle Scholar
  95. Warwick S, Vahed K, Raubenheimer D, Simpson SJ (2009) Free amino acids as phagostimulants in cricket nuptial gifts: support for the ‘Candymaker’ hypothesis. Biol Lett 5:194–196CrossRefPubMedPubMedCentralGoogle Scholar
  96. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gummienny R, Heer FT, TAP DB, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acid Res.
  97. Weiss LA, Dahanukar A, Kwon JY, Banerjee D, Carlson JR (2011) The molecular and cellular basis of bitter taste in Drosophila. Neuron 69:258–272CrossRefPubMedPubMedCentralGoogle Scholar
  98. Whiteman NK, Pierce NE (2007) Delicious poison: genetics of Drosophila host plant preference. Trends Ecol Evol 23:473–478CrossRefGoogle Scholar
  99. Wu Z, Zhang H, Wang Z, Bin S, He H, Li J (2015) Discovery of chemosensory genes in the oriental fruit fly, Bactrocera dorsalis. PLoS One 10:e0129794CrossRefPubMedPubMedCentralGoogle Scholar
  100. Xu PX, Atkinson R, Jones DNM, Smith DP (2005) Drosophila OBP LUSH report is required for activity of pheromone-sensitive neurons. Neuron 45:193–200CrossRefPubMedGoogle Scholar
  101. Xuan N, Bu X, Liu YY, Yang X, Liu GX, Fan ZX, Bi YP, Yang LQ, Lou QN, Rajashekar B, Leppik G, Kasvandik S, Picimbon JF (2014) Molecular evidence of RNA editing in Bombyx chemosensory protein family. PLoS One 9:e86932CrossRefPubMedPubMedCentralGoogle Scholar
  102. Xuan N, Rajashekar B, Kasvandik S, Picimbon JF (2016) Structural components of chemosensory protein mutations in the silkworm moth, Bombyx mori. Agri Gene 2:53–58CrossRefGoogle Scholar
  103. Yamamoto D, Koganezawa M (2013) Genes and circuits of courtship behaviour in Drosophila males. Nat Rev Neurosci 14:681–692CrossRefPubMedGoogle Scholar
  104. Yasukawa J, Tomioka S, Aigaki T, Matsuo T (2010) Evolution of expression patterns of two odorant-binding protein genes, Obp57d and Obp57e, in Drosophila. Gene 467:25–34CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biology, Graduate School of ScienceKobe UniversityKobeJapan

Personalised recommendations