Ant Antennae-Specific Niemann-Pick Type C2 Protein

  • Yuko IshidaEmail author


Ants are found in various ecological environments on the earth. To maintain the colony, worker ants have developed a highly sophisticated chemical communication system to detect semiochemicals, which convey information in a task-specific manner. Invasive ants cause economic damage and disrupt ecosystems. To control the ants, it is important to develop environmentally friendly regulatory methods based on the ants’ behaviors. Such methods could come from the analysis of the molecular basis of olfaction. In this chapter, I introduce discovery, characterization, structure, and phylogenetic analysis of a novel ant antenna-specific protein, the Niemann-Pick type C2 protein from the Japanese carpenter ant, Camponotus japonicus (CjapNPC2). This unique β-structure-rich molecule can be a promising molecular target to specifically disturb chemical communication among the invasive ants. Alternatively, this protein may be used for reverse chemical ecological approaches to identify synthetic semiochemicals as attractants or repellents toward these ants.



We thank Dr. Toshimasa Yamazaki and Dr. Mitsuhiro Miyazawa at the National Institute of Agrobiological Sciences (NIAS), and Dr. Victor Benno Meyer-Rochow at University of Oulu/Research Institute of Luminous Organisms in Hachijojima for valuable comments during manuscript preparation. This work was partly supported by the Global COE program for Global Center for Education and Research in Integrative Membrane Biology and JSPS KAKENHI Grant Number 23580070 (to YI).


  1. Adachi T, Ishii K, Matsumoto Y, Hayashi Y, Hamamoto H, Sekimizu K (2014) Niemann-Pick disease type C2 protein induces triglyceride accumulation in silkworm and mammalian cell lines. Biochem J 459:137–147CrossRefPubMedGoogle Scholar
  2. Angeli S, Ceron F, Scaloni A, Monti M, Monteforti G, Minnocci A, Petacchi R, Pelosi P (1999) Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria. Eur J Biochem 262:745–754CrossRefPubMedGoogle Scholar
  3. Ban L, Zhang L, Yan Y, Pelosi P (2002) Binding properties of a locust’s chemosensory protein. Biochem Biophys Res Commun 293:50–54CrossRefPubMedGoogle Scholar
  4. Boulay R, Coll-Toledano J, Manzaneda AJ, Cerdá X (2007) Geographic variations in seed dispersal by ants: are plant and seed traits decisive? Naturwiss 94:242–246CrossRefPubMedGoogle Scholar
  5. Briand L, Nespoulous C, Huet JC, Pernollet JC (2001) Disulfide pairing and secondary structure of ASP1, an olfactory-binding protein from honeybee (Apis mellifera L.). J Pept Res 58:540–545CrossRefPubMedGoogle Scholar
  6. Cheruku SR, Xu Z, Dutia R, Lobel P, Storch J (2006) Mechanism of cholesterol transfer from the Niemann-Pick type C2 protein to model membranes supports a role in lysosomal cholesterol transport. J Biol Chem 281:31594–31604CrossRefPubMedPubMedCentralGoogle Scholar
  7. Damberger FF, Ishida Y, Leal WS, Wuthrich K (2007) Structural basis of ligand binding and release in insect pheromone-binding proteins: NMR structure of Antheraea polyphemus PBP1 at pH 4.5. J Mol Biol 373:811–819CrossRefPubMedGoogle Scholar
  8. Damberger FF, Michel E, Ishida Y, Leal WS, Wüthrich K (2013) Pheromone discrimination by a pH-tuned polymorphism of the Bombyx mori pheromone-binding protein. Proc Natl Acad Sci U S A 110:18680–18685CrossRefPubMedPubMedCentralGoogle Scholar
  9. Friedland N, Liou H-L, Lobel P, Stock AM (2003) Structure of a cholesterol-binding protein deficient in Niemann-Pick type C2 disease. Proc Natl Acad Sci U S A 100:2512–2517CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gnatzy W, Mohren W, Steinbrecht RA (1984) Pheromone receptors in Bombyx mori and Antheraea pernyi II. Morphometric analysis. Cell Tissue Res 235:35–42CrossRefPubMedGoogle Scholar
  11. González D, Zhao Q, McMahan C, Velasquez D, Haskins WE, Sponsel V, Cassill A, Renthal R (2009) The major antennal chemosensory protein of red imported fire ant workers. Insect Mol Biol 18:395–404CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gotzek D, Axen HJ, Suarez AV, Cahan SH, Shoemaker D (2015) Global invasion history of the tropical fire ant: a stowaway on the first global trade routes. Mol Ecol 24:374–388CrossRefPubMedGoogle Scholar
  13. Hallem EA, Dahanukar A, Carlson JR (2006) Insect odor and taste receptors. Annu Rev Entomol 51:113–135CrossRefPubMedGoogle Scholar
  14. Hekmat-Scafe DS, Scafe CR, McKinney AJ, Tanouye MA (2002) Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res 12:1357–1369CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hojo MK, Ishii K, Sakura M, Yamaguchi K, Shigenobu S, Ozaki M (2015) Antennal RNA-sequencing analysis reveals evolutionary aspects of chemosensory proteins in the carpenter ant, Camponotus japonicus. Sci Rep 5:13541CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hölldobler B, Carlin NF (1987) Anonymity and specificity in the chemical communication signals of social insects. J Com Physiol A 161:567–581CrossRefGoogle Scholar
  17. Hölldobler B, Wilson EO (1990) The ants. Belkanap Press of Harvard University Press, Cambridge, MA, p 746CrossRefGoogle Scholar
  18. Huang X, Warren JT, Buchanan J, Gilbert LI, Scott MP (2007) Drosophila Niemann-Pick Type C-2 genes control sterol homeostasis and steroid biosynthesis: a model of human neurodegenerative disease. Development 134:3733–3742CrossRefPubMedGoogle Scholar
  19. Hughes L, Westoby M, Jurado E (1994) Convergence of elaiosomes and insect prey: evidence from ant foraging behaviour and fatty acid composition. Funct Ecol 8:358–365CrossRefGoogle Scholar
  20. Ishida Y, Leal WS (2005) Rapid inactivation of a moth pheromone. Proc Natl Acad Sci U S A 102:14075–14079CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ishida Y, Chiang V, Leal WS (2002) Protein that makes sense in the Argentine ant. Naturwiss 89:505–507CrossRefPubMedGoogle Scholar
  22. Ishida Y, Tsuchiya W, Fujii T, Fujimoto Z, Miyazawa M, Ishibashi J, Matsuyama S, Ishikawa Y, Yamazaki T (2014) Niemann-Pick type C2 protein madiating chemical communication in the worker ant. Proc Natl Acad Sci U S A 111:3847–3852CrossRefPubMedPubMedCentralGoogle Scholar
  23. Katagiri N, Imai K, Yamashita O (2001) Multiple gene expression up-regulated by diapause hormone in developing ovaries of the silkworm, Bombyx mori. J Insect Biotechnol Sericol 70:113–120Google Scholar
  24. Keil TA (1984) Surface coats of pore tubules and olfactory sensory dendrites of a silkmoth revealed by cationic markers. Tissue Cell 16:705–717CrossRefPubMedGoogle Scholar
  25. Krieger J, von Nickisch-Rosenegk E, Mameli M, Pelosi P, Breer H (1996) Binding proteins from the antennae of Bombyx mori. Insect Biochem Mol Biol 26:297–307CrossRefPubMedGoogle Scholar
  26. Lartigue A, Campanacci V, Roussel A, Larsson AM, Jones TA, Tegoni M, Cambillau C (2002) X-ray structure and ligand binding study of a moth chemosensory protein. J Biol Chem 277:32094–32098CrossRefPubMedGoogle Scholar
  27. Lautenschlager C, Leal WS, Clardy J (2007) Bombyx mori pheromone-binding protein binding nonpheromone ligands: implications for pheromone recognition. Structure 15:1148–1154CrossRefPubMedPubMedCentralGoogle Scholar
  28. Leal WS (2003) Protein that make sense. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-the biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, London, pp 447–476CrossRefGoogle Scholar
  29. Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391CrossRefPubMedGoogle Scholar
  30. Leal WS, Ishida Y (2008) GP-9s are ubiquitous proteins unlikely involved in olfactory mediation of social organization in the red imported fire ant, Solenopsis invicta. PLoS One 3:e3762CrossRefPubMedPubMedCentralGoogle Scholar
  31. Leal WS, Chen AM, Ishida Y, Chiang VP, Erickson ML, Morgan TI, Tsuruda JM (2005a) Kinetics and molecular properties of pheromone binding and release. Proc Natl Acad Sci U S A 102:5386–5391CrossRefPubMedPubMedCentralGoogle Scholar
  32. Leal WS, Parra-Pedrazzoli AL, Kaissling KE, Morgan TI, Zalom FG, Pesak DJ, Dundulis EA, Burks CS, Higbee BS (2005b) Unusual pheromone chemistry in the navel orangeworm: novel sex attractants and a behavioral antagonist. Naturwiss 92:139–146CrossRefPubMedGoogle Scholar
  33. Leal WS, Barbosa RMR, Xu W, Ishida Y, Syed Z, Latte N, Chen AM, Morgan TI, Cornel AJ, Furtado A (2008) Reverse and conventional chemical ecology approaches for the development of oviposition attractants for Culex mosquitoes. PLoS One 3:e3045CrossRefPubMedPubMedCentralGoogle Scholar
  34. Leal WS, Ishida Y, Pelletier J, Xu W, Rayo J, Xu XZ, Ames JB (2009) Olfactory proteins mediating chemical communication in the navel orangeworm moth, Amyelois transitella. PLoS One 4:e7235CrossRefPubMedPubMedCentralGoogle Scholar
  35. Liou HL, Dixit SS, Xu SJ, Tint GS, Stock AM, Lobel P (2006) NPC2, the protein deficient in Niemann-Pick C2 disease, consists of multiple glycoforms that bind a variety of sterols. J Biol Chem 281:36710–36723CrossRefPubMedGoogle Scholar
  36. Meer RV (2012) Ant interactions with soil organisms and associated semiochemicals. J Chem Ecol 38:728–745CrossRefGoogle Scholar
  37. Nakanishi A, Nishino H, Watanabe H, Yokohari F, Nishikawa M (2009) Sex-specific antennal sensory system in the ant Camponotus japonicus: structure and distribution of sensilla on the flagellum. Cell Tissue Res 338:79–97CrossRefPubMedGoogle Scholar
  38. Ozaki M, Ninomiya M, Kashihara Y, Morita H (1986) Destruction and reorganization of the receptor membrane in labellar chemosensory cells of the blowfly. J Gen Physiol 87:533–549CrossRefPubMedGoogle Scholar
  39. Ozaki M, Wada-Katsumata A, Fujikawa K, Iwasaki M, Yokohari F, Satoji Y, Nisimura T, Yamaoka R (2005) Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309:311–314CrossRefPubMedGoogle Scholar
  40. Pelosi P, Zhou JJ, Ban LP, Calvello M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63:1658–1676CrossRefPubMedGoogle Scholar
  41. Pelosi P, Iovinella I, Felicioli A, Dani FR (2014) Soluble proteins of chemical communication: an overview across arthropods. Front Physiol 5:320CrossRefPubMedPubMedCentralGoogle Scholar
  42. Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. BioScience 50:53–65CrossRefGoogle Scholar
  43. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288CrossRefGoogle Scholar
  44. Sandler BH, Nikonova L, Leal WS, Clardy J (2000) Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem Biol 7:143–151CrossRefPubMedGoogle Scholar
  45. Schultz TR (2000) In search of ant ancestors. Proc Natl Acad Sci U S A 97:14028–14029CrossRefPubMedPubMedCentralGoogle Scholar
  46. Shimada I (1975) Chemical treatments of the labellar sugar receptor of the fleshfly. J Insect Physiol 21:1565–1574CrossRefPubMedGoogle Scholar
  47. Silverman J, Brightwell RJ (2008) The argentine ant: challenges in managing an invasive unicolonial pest. Annu Rev Entomol 53:231–252CrossRefPubMedGoogle Scholar
  48. Steinbrecht RA, Gnatzy W (1984) Pheromone receptors in Bombyx mori and Antheraea pernyi: I. Reconstruction of the cellular organization of the sensilla trichodea. Cell Tissue Res 235:25–34CrossRefPubMedGoogle Scholar
  49. Touhara K, Vosshall LB (2009) Sensing odorants and pheromones with chemosensory receptors. Annu Rev Physiol 71:307–332CrossRefPubMedGoogle Scholar
  50. Tschinkel WR (2006) The fire ants. Belkanap Press of Harvard University Press, Cambridge, MA, p 730Google Scholar
  51. Vogt RG (2005) Molecular basis of pheromone detection in insects. In: Gilbert LI, Iatrou K, Gill S (eds) Comprehensive insect physiology, biochemistry, pharmacology and molecular biology, vol 3, Endocrinology. Elsevier, London, pp 753–804Google Scholar
  52. Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163CrossRefGoogle Scholar
  53. Vogt RG, Riddiford LM (1986) Pheromone reception: a kinetic equilibrium. In: Payne TL, Brich MC, Kennedy CEJ (eds) Mechanisms of insect olfaction. Clarendon Press, Oxford, pp 201–208Google Scholar
  54. Vogt RG, Kohne AC, Dubnau JT, Prestwich GD (1989) Expression of pheromone binding proteins during antennal development in the gypsy moth Lymantria dispar. J Neurosci 9:3332–33346CrossRefPubMedGoogle Scholar
  55. Vogt RG, Rybczynski R, Lerner MR (1991) Molecular cloning and sequencing of general odorant-binding proteins GOBP1 and GOBP2 from the tobacco hawk moth Manduca sexta: comparisons with other insect OBPs and their signal peptides. J Neurosci 11:2972–2984CrossRefPubMedGoogle Scholar
  56. Vorum H, Brodersen R, Kragh-Hansen U, Pedersen AO (1992) Solubility of long-chain fatty acids in phosphate buffer at pH 7.4. Biochim Biophys Acta 1126:135–142CrossRefPubMedGoogle Scholar
  57. Wurm Y et al (2011) The genome of the fire ant Solenopsis invicta. Proc Natl Acad Sci U S A 108:5679–5684CrossRefPubMedPubMedCentralGoogle Scholar
  58. Xu S, Benoff B, Liou H-L, Lobel P, Stock AM (2007) Structural basis of sterol binding by NPC2, a lysosomal protein deficient in Niemann-Pick type C2 disease. J Biol Chem 282:23525–23531CrossRefPubMedPubMedCentralGoogle Scholar
  59. Yamashita O (1996) Diapause hormone of the silkworm, Bombyx mori: strucuture, gene expression and function. J Insect Physiol 42:669–679CrossRefGoogle Scholar
  60. Zhou JJ, Huang W, Zhang G-A, Pickett JA, Field LM (2004) “Plus-C” odorant-binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae. Gene 327:117–129CrossRefGoogle Scholar
  61. Zhou XF, Slone JD, Rokas A, Berger SL, Liebig J, Ray A, Reinberg D, Zwiebel LJ (2012) Phylogenetic and transcriptomic analysis of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding. PLoS Genet 8:e1002930CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research Institute of Luminous Organisms in HachijojimaTokyoJapan

Personalised recommendations