Olfactory Systems in Insects: Similarities and Differences Between Species

  • Swikriti Saran Singh
  • Aarush Mohit Mittal
  • Shashank Chepurwar
  • Nitin GuptaEmail author


Many insects rely on their sense of smell to identify food, prey or mates. Odors are detected by the sensory organs and the resulting signals processed by the brains before they can lead to behaviors. A large body of research spanning several decades has generated a wealth of information about olfactory coding and the underlying olfactory systems in many different species of insects. While many features of the olfactory systems are highly conserved, remarkable differences are also found between different insect species. Here we provide a detailed comparison of the molecular, anatomical, and physiological parameters of olfactory systems across species including flies, moths, bees and mosquitoes. We focus on the first three layers of the olfactory system, namely the antenna, the antennal lobe, and the mushroom body. The comparative analysis provides a useful foundation for understanding the role of specific features of olfactory systems in odor coding.


  1. Abel R, Rybak J, Menzel R (2001) Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera. J Comp Neurol 437:363–383CrossRefPubMedGoogle Scholar
  2. Abraham D, Löfstedt C, Picimbon JF (2005) Molecular characterization and evolution of pheromone binding protein genes in Agrotis moths. Insect Biochem Mol Biol 35:1100–1111CrossRefPubMedGoogle Scholar
  3. Abuin L, Bargeton B, Ulbrich MH, Isacoff EY, Kellenberger S, Benton R (2011) Functional architecture of olfactory ionotropic glutamate receptors. Neuron 69:44–60CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ai H, Okada K, Hill ES, Kanzaki R (1998) Spatio-temporal activities in the antennal lobe analyzed by an optical recording method in the male silkworm moth Bombyx mori. Neurosci Lett 258:135–138CrossRefPubMedGoogle Scholar
  5. Andersson MN, Löfstedt C, Newcomb RD (2015) Insect olfaction and the evolution of receptor tuning. Front Ecol Evol 3:1–14Google Scholar
  6. Anton S, Hansson BS (1994) Central processing of sex pheromone, host odour, and oviposition deterrent information by interneurons in the antennal lobe of female Spodoptera littoralis (Lepidoptera: Noctuidae). J Comp Neurol 350:199–214CrossRefPubMedGoogle Scholar
  7. Anton S, Homberg U (1999) Antennal lobe structure. In: Hansson BS (ed) Insect olfaction. Springer, Berlin, pp 97–124CrossRefGoogle Scholar
  8. Anton S, Ignell R, Hansson BS (2002) Developmental changes in the structure and function of the central olfactory system in gregarious and solitary desert locusts. Microsc Res Tech 56:281–291CrossRefPubMedGoogle Scholar
  9. Arnold G, Masson C, Budharugsa S (1984) Demonstration of a sexual dimorphism in the olfactory pathways of the drones of Apis mellifica L. (Hymenoptera, Apidae). Experientia 40:723–725CrossRefGoogle Scholar
  10. Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA, Ngo TT, Dionne H, Abbott L, Axel R, Tanimoto H, Rubin GM (2014) The neuronal architecture of the mushroom body provides a logic for associative learning. elife 3:1–47Google Scholar
  11. Benton R, Sachse S, Michnick SW, Vosshall LB (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4:e20CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bicker G, Schäfer S, Kingan TG (1985) Mushroom body feedback interneurones in the honeybee show GABA-like immunoreactivity. Brain Res 360:394–397CrossRefPubMedGoogle Scholar
  13. Bicker G, Kreissl S, Hofbauer A (1993) Monoclonal antibody labels olfactory and visual pathways in Drosophila and Apis brains. J Comp Neurol 335:413–424CrossRefPubMedGoogle Scholar
  14. Boeckh J, Ernst KD (1987) Contribution of single unit analysis in insects to an understanding of olfactory function. J Comp Physiol A 161:549–565CrossRefGoogle Scholar
  15. Boeckh J, Ernst KD, Sass H, Waldow U (1984) Anatomical and physiological characteristics of individual neurons in the central antennal pathways of insects. J Insect Physiol 30:15–26CrossRefGoogle Scholar
  16. Bohbot JD, Pitts RJ (2015) The narrowing olfactory landscape of insect odorant receptors. Front Ecol Evol 3:1–10CrossRefGoogle Scholar
  17. Bornhauser BC, Meyer EP (1997) Histamine-like immunoreactivity in the visual system and brain of an orthopteran and a hymenopteran insect. Cell Tissue Res 287:211–221CrossRefPubMedGoogle Scholar
  18. Brandt ME (1876) Anatomical and morphological researches on the nervous system of Hymenopterous insects. J Nat Hist Ser 4(18):504–506Google Scholar
  19. Buchner E (1991) Genes expressed in the adult brain of Drosophila and effects of their mutations on behavior: a survey of transmitter- and second messenger-related genes. J Neurogenet 7:153–192CrossRefPubMedGoogle Scholar
  20. Carey AF, Wang G, Su C, Zwiebel LJ, Carlson JR (2010) Odorant reception in the malaria mosquito Anopheles gambiae. Nature 464:66–71CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cayre M, Buckingham SD, Strambi A, Strambi C, Sattelle DB (1998) Adult insect mushroom body neurons in primary culture: cell morphology and characterization of potassium channels. Cell Tissue Res 291:537–547CrossRefPubMedGoogle Scholar
  22. Chou YH, Spletter ML, Yaksi E, Leong JCS, Wilson RI, Luo L (2010) Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nat Neurosci 13:439–449CrossRefPubMedPubMedCentralGoogle Scholar
  23. Christensen TA, Waldrop BR, Harrow ID, Hildebrand JG (1993) Local interneurons and information processing in the olfactory glomeruli of the moth Manduca sexta. J Comp Physiol A 173:385–399CrossRefPubMedGoogle Scholar
  24. Christensen TA, Waldrop BR, Hildebrand JG (1998) Multitasking in the olfactory system: context-dependent responses to odors reveal dual GABA-regulated coding mechanisms in single olfactory projection neurons. J Neurosci 18:5999–6008CrossRefPubMedGoogle Scholar
  25. Crittenden JR, Skoulakis EM, Han KA, Kalderon D, Davis RL (1998) Tripartite mushroom body architecture revealed by antigenic markers. Learn Mem 5:38–51PubMedPubMedCentralGoogle Scholar
  26. Croset V, Rytz R, Cummins SF, Budd A, Brawand D, Kaessmann H, Gibson TJ, Benton R (2010) Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet 6:e1001064CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dacks AM, Christensen TA, Hildebrand JG (2006) Phylogeny of a serotonin-immunoreactive neuron in the primary olfactory center of the insect brain. J Comp Neurol 498:727–746CrossRefPubMedGoogle Scholar
  28. Demmer H, Kloppenburg P (2009) Intrinsic membrane properties and inhibitory synaptic input of kenyon cells as mechanisms for sparse coding? J Neurophysiol 102:1538–1550CrossRefPubMedGoogle Scholar
  29. Distler P (1989) Histochemical demonstration of GABA-like immunoreactivity in cobalt labeled neuron individuals in the insect olfactory pathway. Histochemistry 91:245–249CrossRefPubMedGoogle Scholar
  30. Distler P (1990) GABA-immunohistochemistry as a label for identifying types of local interneurons and their synaptic contacts in the antennal lobes of the American cockroach. Histochemistry 93:617–626CrossRefPubMedGoogle Scholar
  31. Ernst KD, Boeckh J (1983) A neuroanatomical study on the organization of the central antennal pathways in insects III. Neuroanatomical characterization of physiologically defined response types of deutocerebral neurons in Periplaneta americana. Cell Tissue Res 229:1–22CrossRefPubMedGoogle Scholar
  32. Ernst KD, Boeckh J, Boeckh V (1977) A neuroanatomical study on the organization of the central antennal pathways in insects – II. Deutocerebral Connections in Locusta migratoria and Periplaneta americana. Cell Tissue Res 176:285–308CrossRefPubMedGoogle Scholar
  33. Esslen J, Kaissling KE (1976) Zahl und verteilung antennaler sensillen bei der honigbiene (Apis mellifera L.). Zoomorphologie 83:227–251CrossRefGoogle Scholar
  34. Flögel JHL (1878) Über den einheitlichen bau des gehirns in den verschiedenen insektenordnungen. Z Wiss Zool 30:556–592Google Scholar
  35. Forêt S, Maleszka R (2006) Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res 16:1404–1413CrossRefPubMedPubMedCentralGoogle Scholar
  36. Galán RF, Weidert M, Menzel R, Herz AVM, Galizia CG (2006) Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli. Neural Comput 18:10–25CrossRefPubMedGoogle Scholar
  37. Galizia CG, Kimmerle B (2004) Physiological and morphological characterization of honeybee olfactory neurons combining electrophysiology, calcium imaging and confocal microscopy. J Comp Physiol A Sens Neural Behav Physiol 190:21–38CrossRefGoogle Scholar
  38. Ghaninia M, Hansson BS, Ignell R (2007) The antennal lobe of the African malaria mosquito, Anopheles gambiae – innervation and three-dimensional reconstruction. Arthropod Struct Dev 36:23–39CrossRefPubMedGoogle Scholar
  39. Goll W (1967) Strukturuntersuchungen am gehirn von Formica. Z Morph Oekol Tiere 59:143–210CrossRefGoogle Scholar
  40. Goossen H (1948) Untersuchungen an gehirnen verschieden grosser, jeweils verwandter coleopteren-und Hymenopteren-Arten. Zool Jb, Abt Allg Zool U Physiol 62:1–64Google Scholar
  41. Grabe V, Strutz A, Baschwitz A, Hansson BS, Sachse S (2015) Digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster. J Comp Neurol 523:530–544CrossRefPubMedGoogle Scholar
  42. Gu H (2006) Cholinergic synaptic transmission in adult Drosophila kenyon cells in situ. J Neurosci 26:265–272CrossRefPubMedGoogle Scholar
  43. Hallem EA, Carlson JR (2006) Coding of odors by a receptor repertoire. Cell 125:14–60CrossRefGoogle Scholar
  44. Hekmat-Scafe DS (2002) Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res 12:1357–1369CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hill CA, Fox AN, Pitts RJ, Kent LB, Tan PL, Chrystal MA, Cravchik A, Collins FH, Robertson HM, Zwiebel LJ (2002a) G protein-coupled receptors in Anopheles gambiae. Science 298:176–178CrossRefPubMedGoogle Scholar
  46. Hill ES, Iwano M, Gatellier L, Kanzaki R (2002b) Morphology and physiology of the serotonin-immunoreactive putative antennal lobe feedback neuron in the male silkmoth Bombyx mori. Chem Senses 27:475–483CrossRefPubMedGoogle Scholar
  47. Hinke W (1961) Das relative postembryonale wachstum der hirnteile von culex pipiens, drosophila melanogaster und drosophila-mutanten. Z Morphol Oekol Tiere 50:81–118CrossRefGoogle Scholar
  48. Homberg U, Hildebrand JG (1991) Histamine-immunoreactive neurons in the midbrain and suboesophageal ganglion of the sphinx moth Manduca sexta. J Comp Neurol 307:647–657CrossRefPubMedGoogle Scholar
  49. Homberg U, Kingan TG, Hildebrand JG (1987) Immunocytochemistry of GABA in the brain and suboesophageal ganglion of Manduca sexta. Cell Tissue Res 248:1–24CrossRefPubMedGoogle Scholar
  50. Homberg U, Montague RA, Hildebrand JG (1988) Anatomy of antenno-cerebral pathways in the brain of the sphinx moth Manduca sexta. Cell Tissue Res 254:255–281CrossRefPubMedGoogle Scholar
  51. Homberg U, Christensen TA, Hildebrand JG (1989) Structure and function of the deutocerebrum in insects. Annu Rev Entomol 34:477–501CrossRefPubMedGoogle Scholar
  52. Homberg U, Binkle U, Lehman HK, Vullings HGB, Eckert M, Rapus J, Hildebrand JG (1992) Octopamine-immunoreactive neurons in the brain of two insect species. Rhythm Neurons Netw 477Google Scholar
  53. Hoskins S, Homberg U, Kingan T, Christensen T, Hildebrand J (1986) Immunocytochemistry of GABA in the antennal lobes of the sphinx moth Manduca sexta. Cell Tissue Res 244:243–252CrossRefPubMedGoogle Scholar
  54. Howse PE (1974) Design and function in the insect brain. In: Browne LB (ed) Experimental analysis of insect behaviour. Springer, Berlin, pp 180–194CrossRefGoogle Scholar
  55. Huang J, Zhang W, Qiao W, Hu A, Wang Z (2010) Functional connectivity and selective odor responses of excitatory local interneurons in Drosophila antennal lobe. Neuron 67:1021–1033CrossRefPubMedGoogle Scholar
  56. Husch A, Paehler M, Fusca D, Paeger L, Kloppenburg P (2009) Calcium current diversity in physiologically different local interneuron types of the antennal lobe. J Neurosci 29:716–726CrossRefPubMedGoogle Scholar
  57. Ignell R, Dekker T, Ghaninia M, Hansson BS (2005) Neuronal architecture of the mosquito deutocerebrum. J Comp Neurol 493:207–240CrossRefPubMedGoogle Scholar
  58. Jackson FR, Newby LM, Kulkarni SJ (1990) Drosophila GABAergic systems: sequence and expression of glutamic acid decarboxylase. J Neurochem 54:1068–1078CrossRefPubMedGoogle Scholar
  59. Jortner RA, Farivar SS, Laurent G (2007) A simple connectivity scheme for sparse coding in an olfactory system. J Neurosci 27:1659–1669CrossRefPubMedGoogle Scholar
  60. Kanzaki R, Shibuya T (1983) Olfactory neural pathway and sexual pheromone responses in the deutocerebrum of the male silkworm moth, Bombyx mori (Lepidoptera: Bombycidae). Appl Entomol Zool 18:131–133CrossRefGoogle Scholar
  61. Kent KS, Hildebrand JG (1987) Cephalic sensory pathways in the central nervous system of larval manduca sexta (Lepidoptera: Sphingidae). Philos Trans R Soc B Biol Sci 315:1–36CrossRefGoogle Scholar
  62. Kenyon FC (1896a) The meaning and structure of the so-called “Mushroom Bodies” of the Hexapod Brain. Am Nat 30:643–650CrossRefGoogle Scholar
  63. Kenyon FC (1896b) The brain of the bee. A preliminary contribution to the morphology of the nervous system of the arthropoda. J Comp Neurol 6:133–210CrossRefGoogle Scholar
  64. Klemm N (1976) Histochemistry of putative transmitter substances in the insect brain. Prog Neurobiol 7:99–169CrossRefPubMedGoogle Scholar
  65. Koenig C, Hirsh A, Bucks S, Klinner C, Vogel H, Shukla A, Mansfield JH, Morton B, Hansson BS, Grosse-Wilde E (2015) A reference gene set for chemosensory receptor genes of Manduca sexta. Insect Biochem Mol Biol 66:51–63CrossRefPubMedGoogle Scholar
  66. Kreissl S, Bicker G (1989) Histochemistry of acetylcholinesterase and immunocytochemistry of an acetylcholine receptor-like antigen in the brain of the honeybee. J Comp Neurol 286:71–84CrossRefPubMedGoogle Scholar
  67. Kreissl S, Eichmüller S, Bicker G, Rapus J, Eckert M (1994) Octopamine-like immunoreactivity in the brain and subesophageal ganglion of the honeybee. J Comp Neurol 348:583–595CrossRefPubMedGoogle Scholar
  68. Krieger J, Gänβle H, Raming K, Breer H (1993) Odorant binding proteins of Heliothis virescens. Insect Biochem Mol Biol 23:449–456CrossRefPubMedGoogle Scholar
  69. Krieger J, von Nickisch-Rosenegk E, Mameli M, Pelosi P, Breer H (1996) Binding proteins from the antennae of Bombyx mori. Insect Biochem Mol Biol 26:297–307CrossRefPubMedGoogle Scholar
  70. Krieger J, Raming K, Dewer YME, Bette S, Conzelmann S, Breer H (2002) A divergent gene family encoding candidate olfactory receptors of the moth Heliothis virescens. Eur J Neurosci 16:619–628CrossRefPubMedGoogle Scholar
  71. Krieger J, Grosse-Wilde E, Gohl T, Dewer YME, Raming K, Breer H (2004) Genes encoding candidate pheromone receptors in a moth (Heliothis virescens). Proc Natl Acad Sci 101:11845–11850CrossRefPubMedGoogle Scholar
  72. Laissue PP, Reiter C, Hiesinger PR, Halter S, Fischbach KF, Stocker RF (1999) Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J Comp Neurol 405:543–552CrossRefPubMedGoogle Scholar
  73. Laurent G, Davidowitz H (1994) Encoding of olfactory information with oscillating neural assemblies. Science 265:1872–1875CrossRefPubMedGoogle Scholar
  74. Laurent G, Naraghi M (1994) Odorant-induced oscillations in the mushroom bodies of the locust. J Neurosci 14:2993–3004CrossRefPubMedGoogle Scholar
  75. Leiss F, Koper E, Hein I, Fouquet W, Lindner J, Sigrist S, Tavosanis G (2009) Characterization of dendritic spines in the Drosophila central nervous system. Dev Neurobiol 69:221–234CrossRefPubMedGoogle Scholar
  76. Leitch B, Laurent G (1996) GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system. J Comp Neurol 372:487–514CrossRefPubMedGoogle Scholar
  77. Lemon WC, Getz WM (1998) Responses of cockroach antennal lobe projection neurons to pulsatile olfactory stimuli. Ann N Y Acad Sci 855:517–520CrossRefPubMedGoogle Scholar
  78. Li Y, Strausfeld NJ (1997) Morphology and sensory modality of mushroom body extrinsic neurons in the brain of the cockroach, Periplaneta americana. J Comp Neurol 387:631–650CrossRefPubMedGoogle Scholar
  79. Liu X, Davis RL (2009) The GABAergic anterior paired lateral neuron suppresses and is suppressed by olfactory learning. Nat Neurosci 12:53–59CrossRefPubMedGoogle Scholar
  80. Lutz EM, Tyrer NM (1987) Immunohistochemical localization of choline acetyltransferase in the central nervous system of the locust. Brain Res 407:173–179CrossRefPubMedGoogle Scholar
  81. MacLeod K, Laurent G (1996) Distinct mechanisms for synchronization and temporal patterning of odor-encoding neural assemblies. Science 274:976–979CrossRefPubMedGoogle Scholar
  82. Malun D (1991) Synaptic relationships between GABA-immunoreactive neurons and an identified uniglomerular projection neuron in the antennal lobe of Periplaneta americana: a double-labeling electron microscopic study. Histochemistry 96:197–207CrossRefPubMedGoogle Scholar
  83. Masuda-Nakagawa LM, Ito K, Awasaki T, O’Kane CJ (2014) A single GABAergic neuron mediates feedback of odor-evoked signals in the mushroom body of larval Drosophila. Front Neural Circuits 8:35CrossRefPubMedPubMedCentralGoogle Scholar
  84. Mizunami M, Okada R, Li Y, Strausfeld NJ (1998a) Mushroom bodies of the cockroach: activity and identities of neurons recorded in freely moving animals. J Comp Neurol 402:501–519CrossRefPubMedGoogle Scholar
  85. Mizunami M, Iwasaki M, Okada R, Nishikawa M (1998b) Topography of four classes of kenyon cells in the mushroom bodies of the cockroach. J Comp Neurol 399:162–175CrossRefPubMedGoogle Scholar
  86. Mobbs PG (1982) The brain of the honeybee Apis mellifera. I. The connections and spatial organization of the mushroom bodies. Philos Trans R Soc B Biol Sci 298:309–354CrossRefGoogle Scholar
  87. Nässel DR (1988) Serotonin and serotonin-immunoreactive neurons in the nervous system of insects. Prog Neurobiol 30:1–85CrossRefPubMedGoogle Scholar
  88. Nässel DR, Elekes K (1992) Aminergic neurons in the brain of blowflies and Drosophila: dopamine- and tyrosine hydroxylase-immunoreactive neurons and their relationship with putative histaminergic neurons. Cell Tissue Res 267:147–167CrossRefPubMedGoogle Scholar
  89. Neder R (1957) Allometrisches wachstum von hirnteilen bei drei verschieden großen schabenarten. Zool Jahrb Anat 4:411–464Google Scholar
  90. Ng M, Roorda RD, Lima SQ, Zemelman BV, Morcillo P, Miesenböck G (2002) Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36:463–474CrossRefPubMedGoogle Scholar
  91. Oland LA, Tolbert LP (1988) Effects of hydroxyurea parallel the effects of radiation in developing olfactory glomeruli in insects. J Comp Neurol 278:377–387CrossRefPubMedGoogle Scholar
  92. Papadopoulou M, Cassenaer S, Nowotny T, Laurent G (2011) Normalization for sparse encoding of odors by a wide-field interneuron. Science 332:721–725CrossRefPubMedPubMedCentralGoogle Scholar
  93. Pearson L (1971) The corpora pedunculata of Sphinx ligustri L. and other lepidoptera: an anatomical study. Philos Trans R Soc B Biol Sci 259:477–516CrossRefGoogle Scholar
  94. Picimbon JF (2003) Biochemistry and evolution of OBP and CSP proteins. In: Vogt RG, Blomquist GJ (eds) Insect pheromone biochemistry and molecular biology – The biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, London/San Diego, pp 539–566CrossRefGoogle Scholar
  95. Picimbon JF, Gadenne C (2002) Evolution of noctuid pheromone binding proteins: identification of PBP in the black cutworm moth, Agrotis ipsilon. Insect Biochem Mol Biol 32:839–846CrossRefPubMedGoogle Scholar
  96. Pollack I, Hofbauer A (1991) Histamine-like immunoreactivity in the visual system and brain of Drosophila melanogaster. Cell Tissue Res 266:391–398CrossRefPubMedGoogle Scholar
  97. Prestwich GD, Du G, LaForest S (1995) How is pheromone specificity encoded in proteins? Chem Senses 20:461–469CrossRefPubMedGoogle Scholar
  98. Python F, Stocker RF (2002) Immunoreactivity against choline acetyltransferase, γ-aminobutyric acid, histamine, octopamine, and serotonin in the larval chemosensory system of Drosophila melanogaster. J Comp Neurol 453:157–167CrossRefPubMedGoogle Scholar
  99. Ramaekers A, Parmentier ML, Lasnier C, Bockaert J, Grau Y (2001) Distribution of metabotropic glutamate receptor DmGlu-A in Drosophila melanogaster central nervous system. J Comp Neurol 438:213–225CrossRefPubMedGoogle Scholar
  100. Rehder V, Bicker G, Hammer M (1987) Serotonin-immunoreactive neurons in the antennal lobes and suboesophageal ganglion of the honeybee. Cell Tissue Res 247:59–66CrossRefGoogle Scholar
  101. Rein K, Zöckler M, Mader MT, Grübel C, Heisenberg M (2002) The Drosophila standard brain. Curr Biol 12:227–231CrossRefPubMedGoogle Scholar
  102. Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee, Apis mellifera: Expansion of the odorant, but not gustatory, receptor family. Genome Res 16:1395–1403CrossRefPubMedPubMedCentralGoogle Scholar
  103. Robertson HM, Warr CG, Carlson JR (2003) Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci 100:14537–14542CrossRefPubMedGoogle Scholar
  104. Rospars JP, Hildebrand JG (1992) Anatomical identification of glomeruli in the antennal lobes of the male sphinx moth Manduca sexta. Cell Tissue Res 270:205–227CrossRefPubMedGoogle Scholar
  105. Rybak J, Menzel R (1993) Anatomy of the mushroom bodies in the honey bee brain: The neuronal connections of the alpha-lobe. J Comp Neurol 334:444–465CrossRefPubMedGoogle Scholar
  106. Salecker I, Distler P (1990) Serotonin-immunoreactive neurons in the antennal lobes of the American cockroach Periplaneta americana: light- and electron-microscopic observations. Histochemistry 94:463–473CrossRefPubMedGoogle Scholar
  107. Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002–1006CrossRefPubMedGoogle Scholar
  108. Schäfer S, Bicker G (1986) Distribution of GABA-like immunoreactivity in the brain of the honeybee. J Comp Neurol 246:287–300CrossRefPubMedGoogle Scholar
  109. Schäfer S, Rehder V (1989) Dopamine-like immunoreactivity in the brain and suboesophageal ganglion of the honeybee. J Comp Neurol 280:43–58CrossRefPubMedGoogle Scholar
  110. Schäfer S, Rosenboom H, Menzel R (1994) Ionic currents of Kenyon cells from the mushroom body of the honeybee. J Neurosci 14:4600–4612CrossRefPubMedGoogle Scholar
  111. Schildberger K (1983) Local interneurons associated with the mushroom bodies and the central body in the brain of Acheta domesticus. Cell Tissue Res 230:573–586CrossRefPubMedGoogle Scholar
  112. Schildberger K (1984) Multimodal interneurons in the cricket brain: properties of identified extrinsic mushroom body cells. J Comp Physiol A 154:71–79CrossRefGoogle Scholar
  113. Schneider D, Kaissling KE (1957) Der Bau der Antenne des Seidenspinners Bombyx mori L., II. Sensillen, cuticulare Bildungen und innerer Bau. Zool Jahrb Anat 76:223–250Google Scholar
  114. Seki Y, Kanzaki R (2008) Comprehensive morphological identification and GABA immunocytochemistry of antennal lobe local interneurons in Bombyx mori. J Comp Neurol 506:93–107CrossRefPubMedGoogle Scholar
  115. Seki Y, Rybak J, Wicher D, Sachse S, Hansson BS (2010) Physiological and morphological characterization of local interneurons in the Drosophila antennal lobe. J Neurophysiol 104:1007–1019CrossRefPubMedGoogle Scholar
  116. Shang Y, Claridge-Chang A, Sjulson L, Pypaert M, Miesenböck G (2007) Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 128:601–612CrossRefPubMedPubMedCentralGoogle Scholar
  117. Smadja C, Shi P, Butlin RK, Robertson HM (2009) Large gene family expansions and adaptive evolution for odorant and gustatory receptors in the pea aphid, Acyrthosiphon pisum. Mol Biol Evol 26:2073–2086Google Scholar
  118. Stocker RF, Lienhard MC, Borst A, Fischbach KF (1990) Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res 262:9–34CrossRefPubMedGoogle Scholar
  119. Stopfer M, Bhagavan S, Smith BH, Laurent G (1997) Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390:70–74CrossRefGoogle Scholar
  120. Strausfeld NJ (1976) Atlas of an insect brain, vol 52. Springer, Berlin, pp 1096–1109CrossRefGoogle Scholar
  121. Strausfeld NJ, Li Y (1999) Organization of olfactory and multimodal afferent neurons supplying the calyx and pedunculus of the cockroach mushroom bodies. J Comp Neurol 409:603–625CrossRefPubMedGoogle Scholar
  122. Strausfeld NJ, Hansen L, Li Y, Gomez RS, Ito K (1998) Evolution, discovery, and interpretations of arthropod mushroom bodies. Learn Mem 5:11–37PubMedPubMedCentralGoogle Scholar
  123. Sun XJ, Fonta C, Masson C (1993) Odour quality processing by bee antennal lobe interneurones. Chem Senses 18:355–377CrossRefGoogle Scholar
  124. Svidersky VL, Plotnikova SI (2004) On structural-functional organization of dragonfly mushroom bodies and some general considerations about purpose of these formations. J Evol Biochem Physiol 40:608–624CrossRefGoogle Scholar
  125. Tabuchi M, Inoue S, Kanzaki R, Nakatani K (2012) Whole-cell recording from kenyon cells in silkmoths. Neurosci Lett 528:61–66CrossRefPubMedGoogle Scholar
  126. Tanaka NK, Tanimoto H, Ito K (2008) Neuronal assemblies of the Drosophila mushroom body. J Comp Neurol 508:711–755CrossRefPubMedGoogle Scholar
  127. Tanaka K, Uda Y, Ono Y, Nakagawa T, Suwa M, Yamaoka R, Touhara K (2009) Highly selective tuning of a silkworm olfactory receptor to a key mulberry leaf volatile. Curr Biol 19:881–890CrossRefPubMedGoogle Scholar
  128. Tyrer NM, Turner JD, Altman JS (1984) Identifiable neurons in the locust central nervous system that react with antibodies to serotonin. J Comp Neurol 227:313–330CrossRefPubMedGoogle Scholar
  129. Vieira FG, Sánchez-Gracia A, Rozas J (2007) Comparative genomic analysis of the odorant-binding protein family in 12 Drosophila genomes: purifying selection and birth-and-death evolution. Genome Biol 8:R235CrossRefPubMedPubMedCentralGoogle Scholar
  130. Vogt K, Aso Y, Hige T, Knapek S, Ichinose T, Friedrich AB, Turner GC, Rubin GM, Tanimoto H (2016) Direct neural pathways convey distinct visual information to Drosophila mushroom bodies. Elife 5:e14009CrossRefPubMedPubMedCentralGoogle Scholar
  131. Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163CrossRefGoogle Scholar
  132. Vogt RG, Rogers ME, Franco M, Sun M (2002) A comparative study of odorant binding protein genes: differential expression of the PBP1-GOBP2 gene cluster in Manduca sexta (Lepidoptera) and the organization of OBP genes in Drosophila melanogaster (Diptera). J Exp Biol 205:719–744PubMedGoogle Scholar
  133. Vowles DM (1955) The structure and connexions of the corpora pedunculata in bees and ants. Q J Microsc Sci 96:239–255Google Scholar
  134. Vowles DM (1964) Olfactory learning and brain lesions in the wood ant (Formica rufa). J Comp Physiol Psychol 58:105–111CrossRefPubMedGoogle Scholar
  135. Waldrop B, Christensen TA, Hildebrand JG (1987) GABA-mediated synaptic inhibition of projection neurons in the antennal lobes of the sphinx moth, Manduca sexta. J Comp Physiol A 161:23–32CrossRefPubMedGoogle Scholar
  136. Wang X et al (2014) The locust genome provides insight into swarm formation and long-distance flight. Nat Commun 5:2957CrossRefPubMedPubMedCentralGoogle Scholar
  137. Wang Z, Yang P, Chen D, Jiang F, Li Y, Wang X, Kang L (2015) Identification and functional analysis of olfactory receptor family reveal unusual characteristics of the olfactory system in the migratory locust. Cell Mol Life Sci 72:4429–4443CrossRefPubMedPubMedCentralGoogle Scholar
  138. Watanabe H, Nishino H, Nishikawa M, Mizunami M, Yokohari F (2010) Complete mapping of glomeruli based on sensory nerve branching pattern in the primary olfactory center of the cockroach Periplaneta americana. J Comp Neurol 518:3907–3930CrossRefPubMedGoogle Scholar
  139. Weiss MJ (1981) Structural patterns in the corpora pedunculata of orthoptera: a reduced silver analysis. J Comp Neurol 203:515–553CrossRefPubMedGoogle Scholar
  140. Wendt B, Homberg U (1992) Immunocytochemistry of dopamine in the brain of the locust Schistocerca gregaria. J Comp Neurol 321:387–403CrossRefPubMedGoogle Scholar
  141. Werringloer A (1932) Die sehorgane und sehzentren der dorylinen nebst untersuchungen über die facettenaugen der Formiciden. Z Wiss Zool 141:432–520Google Scholar
  142. Wilson RI, Laurent G (2005) Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J Neurosci 25:9069–9079CrossRefPubMedGoogle Scholar
  143. Wilson RI, Turner GC, Laurent G (2004) Transformation of olfactory representations in the Drosophila antennal lobe. Science (80-) 303:366–370CrossRefGoogle Scholar
  144. Witthöft W (1967) Absolute anzahl und verteilung der zellen im him der honigbiene. Z Morphol Tiere 61:160–184CrossRefGoogle Scholar
  145. Yasuyama K, Salvaterra PM (1999) Localization of choline acetyltransferase-expressing neurons in Drosophila nervous system. Microsc Res Tech 45:65–79CrossRefPubMedGoogle Scholar
  146. Yasuyama K, Meinertzhagen IA, Schürmann FW (2002) Synaptic organization of the mushroom body calyx in Drosophila melanogaster. J Comp Neurol 445:211–226CrossRefPubMedGoogle Scholar
  147. Zhou JJ, He XL, Pickett JA, Field LM (2008) Identification of odorant-binding proteins of the yellow fever mosquito Aedes aegypti: genome annotation and comparative analyses. Insect Mol Biol 17:147–163CrossRefPubMedGoogle Scholar
  148. Zhou JJ, Robertson G, He X, Dufour S, Hooper AM, Pickett JA, Keep NH, Field LM (2009) Characterisation of Bombyx mori odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components. J Mol Biol 389:529–545CrossRefPubMedGoogle Scholar
  149. Zhou JJ, Vieira FG, He XL, Smadja C, Liu R, Rozas J, Field LM (2010) Genome annotation and comparative analyses of the odorant-binding proteins and chemosensory proteins in the pea aphid Acyrthosiphon pisum. Insect Mol Biol 19:113–122Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Swikriti Saran Singh
    • 1
  • Aarush Mohit Mittal
    • 1
  • Shashank Chepurwar
    • 1
  • Nitin Gupta
    • 1
    Email author
  1. 1.Department of Biological Sciences and BioengineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations