Skip to main content

Pheromone, Natural Odor and Odorant Reception Suppressing Agent (ORSA) for Insect Control

  • Chapter
  • First Online:
  • 1172 Accesses

Abstract

Odorant-binding proteins (OBPs) are small “bowl-like” globular proteins, highly abundant in the antennae of most insect species. These proteins are believed to mediate reception of odor molecules at the periphery of sensory receptor neurons. Therefore, they may represent crucial targets for becoming new methods of insect pest control by directly interfering with the olfactory acuity of the insect. The current better understanding of molecular mechanisms underlying odor detection and the knowledge about the functional binding sites of OBPs and many other families of binding proteins in various insect species is elucidated here. Such information forms the basis for the synthesis of new inhibitor olfactory compounds (Odorant Reception-Suppressing Agents, ORSAs) to interact specifically with the groups of insect pests.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham D, Löfstedt C, Picimbon JF (2005) Molecular evolution and characterization of pheromone binding protein genes in Agrotis moths. Insect Biochem Mol Biol 35:1100–1111

    CAS  PubMed  Google Scholar 

  • Abrell L, Guerenstein PG, Mechaber WL, Stange G, Christensen TA, Nakanishi K, Hildebrand JH (2005) Effect of elevated atmospheric CO2 on oviposition behaviour in Manduca sexta moths. Glob Chang Biol 11:1272–1282

    Google Scholar 

  • Ageep TB, Damiens D, Alsharif B, Ahmed A, Salih EHO, Ahmed FTA, Diabaté A, Lees RS, Gilles JRL, El Sayed BB (2014) Participation of irradiated Anopheles arabiensis males in swarms following field release in Sudan. Malar J 13:484

    Article  PubMed  PubMed Central  Google Scholar 

  • Aukema BH, Dahlsten DL, Raffa KF (2000) Improved populations monitoring of bark beetles and predators by incorporating disparate behavioural responses to semiochemicals. Environ Entomol 29:618–629

    Article  Google Scholar 

  • Baird E, Kreiss E, Wcislo W, Warrant E, Dacke M (2011) Nocturnal insects use optic flow for flight control. Biol Lett 7:499–501

    Article  PubMed  PubMed Central  Google Scholar 

  • Ban LP, Napolitano E, Serra A, Zhou XH, Iovinella I, Pelosi P (2013) Identification of pheromone-like compounds in male reproductive organs of the oriental locust Locusta migratoria. Biochem Biophys Res Commun 437:620–624

    Article  CAS  PubMed  Google Scholar 

  • Beale MH, Birkett MA, Bruce TJA, Chamberlain K, Field LA, Huttly AK, Martin JL, Parker R, Phillips AL, Pickett JA, Prosser IM, Shewry PR, Smart LE, Wadhams LJ, Woodcock CM, Zhang Y (2006) Aphid alarm pheromone produced by transgenic plants affect aphid and parasitoid behavior. Proc Natl Acad Sci U S A 103:10509–10513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bidau CJ (2018) Doomsday for insects? The alarming decline of insect populations around the world. J Insect Biodivers 6:1–5

    Article  Google Scholar 

  • Birkett MA, Pickett JA (2003) Aphid sex pheromones: from discovery to commercial production. Phytochemistry 62:651–656

    Article  CAS  PubMed  Google Scholar 

  • Blomquist GJ, Figueoa-Teran R, Aw M, Song M, Gorzalski A, Abbott NL, Chang E, Tittiger C (2010) Pheromone production in bark beetles. Insect Biochem Mol Biol 40:699–712

    Article  CAS  PubMed  Google Scholar 

  • Bocquet N, de Carvalho LP, Cartaud J, Neyton J, Le Poupon C, Taly A, Grutter T, Changeux JP, Corringer PJ (2007) A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. Nature 445:116–119

    Article  CAS  PubMed  Google Scholar 

  • Boeckh J (1962) Elektrophysiologische Untersuchungen an einzelnen Geruchsrezeptoren auf den Antennen des Totengraebers (Necrophorus, Coleoptera). Z Vergl Physiol 46:212–248

    Article  Google Scholar 

  • Bøhn T, Lövei GL (2017) Complex outcomes from insect and weed control with transgenic plants: ecological surprises? Front Environ Sci 5:60 

    Google Scholar 

  • Boncheva R, Dukiandjiev S, Minkov I, de Maagd RA, Naimov S (2006) Activity of Bacillus thuringiensis δ-endotoxins against codling moth (Cydia pomonella L.) larvae. J Inv Pathol 92:96–99

    Article  CAS  Google Scholar 

  • Bowers WS, Nishino C, Montgomery ME, Nault LR (1977) Structure-activity relationships of analogs of the aphid alarm pheromone, (E)-b-farnesene. J Insect Physiol 23:697–701

    Google Scholar 

  • Bradberry SM, Cage SA, Proudfoot AT, Vale JA (2005) Poisoning due to pyrethroids. Toxicol Rev 24:93–106

    Article  CAS  PubMed  Google Scholar 

  • Brown JK, Frohlich DR, Rosell RC (1995) The sweet potato or silverleaf whiteflies: biotype of Bemisia tabaci or a species complex. Annu Rev Entomol 40:511–534

    Article  CAS  Google Scholar 

  • Butenandt A (1963) Bombykol, the sex attractive substance of the silkworm moth Bombyx mori. Endocrinology 27:9

    Google Scholar 

  • Butenandt A, Beckmann R, Stamm D, Hecker E (1959) Über den Sexuallockstoff des Seidenspinners Bombyx mori. Reindarstellung Konstitution Z Naturforsch 14b:283–284

    Google Scholar 

  • Byers J (1991) Pheromone and chemical ecology of locusts. Biol Rev 66:347–378

    Article  Google Scholar 

  • Carroll FA, Boldridge DW, Lee JT, Martin RR, Turner MJ, Venable TL (1980) Synthesis and field tests of analogues of the housefly pheromone (Z)-9-tricosene. J Agric Food Chem 28:343–346

    Google Scholar 

  • Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Natl Acad Sci U S A 114:E6089–E6096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corringer PJ, Poitevin F, Prevost MS, Sauguet L, Delarue M, Changeux JP (2012) Structure and pharmacology of pentametic receptor channels: from bacteria to brain. Structure 20:941–956

    Article  CAS  PubMed  Google Scholar 

  • Culler LE, Ayres MP, Virginia RA (2015) In a warmer Arctic, mosquitoes avoid increased mortality from predators by growing faster. Proc R Soc B 282:20151549

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahlsten DL, Six DL, Erbilgin N, Raffa KF, Lawson AB, Rowney DL (2003) Attraction of Ips pini (Coleoptera: Scolytidae) and its predators to various enantiomeric ratios of Ipsdienol and Lanierone in California: implications for the augmentation and conservation of natural enemies. Environ Entomol 32:1115–1122

    Article  CAS  Google Scholar 

  • Darbro J, Millar JG, McElfresh JS, Mullens BA (2005) Survey of Muscalure [(Z)-9-tricosene] on house flies (Diptera: Muscidae) from field populations in California. Environ Entomol 34:1418–1425

    Article  CAS  Google Scholar 

  • Dawson GW, Pickett JA, Smiley DWM (1996) The aphid sex pheromone cyclopentanoids: synthesis in the elucidation of structure and biosynthetic pathways. Bioorg Med Chem 4:351–361

    Article  CAS  PubMed  Google Scholar 

  • de Brito Sanchez MG, Kaissling KE (2005a) The antennal benzoic- acid receptor cell of the female silk moth Bombyx mori L.: structure-activity relationship studies with halogen substitutes. J Comp Physiol A 191:189–196

    Article  Google Scholar 

  • de Brito Sanchez MG, Kaissling KE (2005b) Inhibitory and excitatory effects of iodobenzene on the antennal benzoic acid receptor cells of the female silk moth Bombyx mori L. Chem Senses 30:1–8

    Article  CAS  Google Scholar 

  • DeGennaro M (2015) The mysterious multi-modal repellency of DEET. Fly (Austin) 9:45–51

    Article  Google Scholar 

  • Degraaf M (2016) Attack of the cicadas! Mother captures bug-swarming horror in Ohio as billions of the humming insects descend on the Midwest. MailOnline News and Associated Press, 16 June 2016

    Google Scholar 

  • Deisig N, Kropf J, Vitecek S, Pevergne D, Rouyar A, Sandoz JC, Lucas P, Gadenne C, Anton S, Barrozo R (2012) Differential interactions of sex pheromone and plant odour in the olfactory pathway of a male moth. PLoS One 7:e33159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Luccio E, Ishida Y, Leal WS, Wilson DK (2013) Crystallographic observation of pH-induced conformational changes in the Amyelois transitella pheromone-binding protein AtraPBP1. PLoS One 8:e53840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diabaté A, Yaro AS, Dao A, Diallo M, Huestis DL, Lehmann T (2011) Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evol Biol 11:184

    Article  PubMed  PubMed Central  Google Scholar 

  • Dillon RJ, Vennard CT, Charnley AK (2000) Pheromones: exploitation of gut bacteria in the locust. Nature 403:851

    Article  CAS  PubMed  Google Scholar 

  • Ditzen M, Pellegrino M, Vosshall LB (2008) Insect odorant receptors are molecular targets of the insect repellent DEET. Science 319:1838–1842

    Article  CAS  PubMed  Google Scholar 

  • Downes JA (1969) The swarming and mating flight of Diptera. Annu Rev Entomol 14:271–298

    Article  Google Scholar 

  • Du G, Prestwich GD (1995) Protein structure encodes the ligand binding specificity in pheromone binding proteins. Biochemistry 34:8726–8732

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Feng B, Li H, Liu C, Zeng L, Pan L, Yu Q (2015) Field evaluation of Agrotis ipsilon (Lepidoptera: Noctuidae) pheromone blends and their application to monitoring moth populations in China. Environ Entomol 44:724–733

    Article  CAS  PubMed  Google Scholar 

  • Duyck PF, David P, Quilici S (2006a) Climatic niche partitioning following successive invasions by fruit flies in La Réunion. J Anim Ecol 75:518–526

    Article  PubMed  Google Scholar 

  • Duyck PF, David P, Junod G, Gutleben C, Dupont R, Quilici S (2006b) Importance of competition mechanisms in successive invasion by polyphagous tephritids in La Réunion. Ecology 87:1770–1780

    Article  PubMed  Google Scholar 

  • Emburry-Dennis T (2017) Scientists warn of ‘ecological Armageddon’ after study shows flying insect numbers plummeting 75%. http://www.independent.co.uk/news/science/flying-insects-numbers-drop-ecological-armageddon-75-per-cent-plummet-a8008406.html

  • Feld L, Hjelmsø MH, Nielsen MS, Jacobsen AD, Rønn R, Ekelund F, Krogh PH, Strobel BW, Jacobsen CS (2015) Pesticide side effects in an agricultural soil ecosystem as measured by amoA expression quantification and bacterial diversity changes. PLoS One 10:e0126080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng L, Prestwich GD (1997) Expression and characterization of a lepidopteran general odorant binding protein. Insect Biochem Mol Biol 27:405–412

    Article  CAS  PubMed  Google Scholar 

  • Ferenz HJ, Seidelmann K (2003) Pheromones in relation to aggregation and reproduction in desert locusts. Physiol Entomol 28:11–18

    Article  CAS  Google Scholar 

  • Ferenz HJ, Luber K, Wieting J (1994) Pheromones as a means of controlling migratory locusts. In: Krall S, Wilps H (eds) New trends in locust control, Schriftenreihe no 245. GTZ, Eschborn, pp 81–89.

    Google Scholar 

  • Ferveur JF (2010) Drosophila female courtship and mating behaviors: sensory signals, genes, neural structures and evolution. Curr Opin Neurobiol 20:764–769

    Article  CAS  PubMed  Google Scholar 

  • Fischer M, Corringer PJ, Schott K, Bacher A, Changeux JP (2001) A method for soluble overexpression of the α7 nicotinic acetylcholine receptor extracellular domain. Proc Natl Acad Sci U S A 98:3567–3570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick SM, McNeil JN (1988) Male scent in lepidopteran communication: the role of of male pheromone in mating Pseudaletia unipuncta (haw.) (Lepidoptera: Noctuidae). Mem Entomol Soc Can 120:131–151

    Article  Google Scholar 

  • Forêt S, Maleszka R (2006) Function and evolution of a gene family encoding odorant-binding proteins in a social insect, the honey bee (Apis mellifera). Genome Res 16:1404–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadenne C, Picimbon JF, Bécard JM, Lalanne-Cassou B, Renou M (1997) Development and pheromone communication systems in hybrids of Agrotis ipsilon and Agrotis segetum (Lepidoptera, Noctuidae). J Chem Ecol 23:191–209

    Article  Google Scholar 

  • Galvan TL, Burkness EC, Koch RL, Hutchison WD (2009) Multicolored Asia lady beetle (Coleoptera: Coccinellidae) activity and wine grape phenology: implications for pest management. Environ Entomol 38:1563–1574

    Article  CAS  PubMed  Google Scholar 

  • Gaudry Q, Nagel KI, Wilson RI (2012) Smelling on the fly: sensory cues and strategies for olfactory navigation in Drosophila. Curr Opin Neurobiol 22:216–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gemeno C, Haynes KF (1998) Chemical and behavioral evidence for a third pheromone component in a North American population of the black cutworm moth, Agrotis ipsilon. J Chem Ecol 24:999–1011

    Article  CAS  Google Scholar 

  • Gibson NHE (1945) On the mating swarm of certain chironomidae (Diptera). Trans R Entomol Soc Lond 95:263–294

    Article  Google Scholar 

  • Gitau CW, Bashford R, Carnegie AJ, Gurr GM (2013) A review of semiochemicals associated with bark beetle (Coleoptera: Curculionidae: Scolytinae) pests of coniferous trees: a focus on beetle interactions with other pests and their associates. Forest Ecol Manag 297:1–14

    Article  Google Scholar 

  • Grant AJ, O’Connell RJ (2007) Age-related changes in female mosquito carbon dioxide detection. J Med Entomol 44:617–623

    Article  CAS  PubMed  Google Scholar 

  • Grieco JP, Achee NL, Chareonviriyaphap T, Suwonkerd W, Chauhan K, Sardelis MR, Roberts DR (2007) A new classification system for the actions of IRS chemicals traditionally used for malaria control. PLoS One 2:e716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerestein PG, Hildebrand JH (2008) Roles and effects of environmental carbon dioxide in insect life. Annu Rev Entomol 53:161–178

    Article  CAS  Google Scholar 

  • Hallem EA, Ho MG, Carlson JR (2004) The molecular basis of odor coding in the Drosophila antenna. Cell 117:965–979

    Article  CAS  PubMed  Google Scholar 

  • Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, Stenmans W, Müller A, Sumser H, Hörren T, Goulson D, de Kroon H (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12:e0185809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie J, Holyoak M, Nicholas J, Nottingham SF, Pickett JA, Wadhams LJ, Woodcock CM (1990) Aphid sex pheromone components: age-dependent release by females and species-specific male response. Chemoecology 1:63–68

    Article  CAS  Google Scholar 

  • Helinski EH, Hassan MM, El-Motasim WM, Malcolm CA, Knols BGJ, El-Sayed B (2008) Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: irradiation, transportation, and field cage experimentation. Malar J 7:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill AS, Rings RW, Swier SR, Roelofs WS (1979) Sex pheromone of the black cutworm moth, Agrotis ipsilon. J Chem Ecol 5:439–457

    Article  CAS  Google Scholar 

  • Hölldobler B, Maschwitz U (1965) Der Hochzeitsschwarm der Rossameise Camponotus herculeanus L. (Hym. Formicidae). Z Vergl Physiol 50:551–568

    Article  Google Scholar 

  • Honson N, Johnson MA, Oliver JE, Prestwich GD, Plettner E (2003) Structure-activity studies with pheromone-binding proteins of the gypsy moth, Lymantria dispar. Chem Senses 28:479–489

    Article  CAS  PubMed  Google Scholar 

  • Horst R, Damberger F, Luginbühl P, Güntert P, Peng G, Nikonova L, Leal WS, Wuthrich K (2001) NMR structure reveals intramolecular regulation mechanism for pheromone binding and release. Proc Natl Acad Sci U S A 25:14374–14379

    Article  Google Scholar 

  • Houck LD (2009) Pheromone communication in amphibians and reptiles. Annu Rev Physiol 71:161–176

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Magori K, Lloyd AL, Gould F (2007) Introducing transgenes into insect populations using combined gene-drive strategies: modeling and analysis. Insect Biochem Mol Biol 37:1054–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imhoof M (2012) More than honey. Documentary from the producers of WE FEED THE WORLD, Switzerland, 95 minutes

    Google Scholar 

  • Inceoglu AB, Kamita SG, Hinton AC, Huang Q, Severson TF, Kang KD, Hammock BD (2001) Recombinant baculoviruses for insect control. Pest Manag Sci 57:981–987

    Article  CAS  PubMed  Google Scholar 

  • Jallow MFA, Cunningham JP, Zalucki MP (2004) Intra-specific variation for host plant use in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae): implications for management. Crop Prot 23:955–964

    Article  Google Scholar 

  • Jansen S, Zidek L, Löfstedt C, Picimbon JF, Sklenar V (2006) 1H, 13C and 15N resonance assignment of Bombyx mori chemosensory protein 1 (BmorCSP1). J Biomol NMR 1:47

    Article  Google Scholar 

  • Jansen S, Chmelik J, Zidek L, Padrta P, Novak P, Zdrahal Z, Picimbon JF, Löfstedt C, Sklenar V (2007) Structure of Bombyx mori chemosensory protein 1 in solution. Arch Insect Biochem Physiol 66:135–145

    Article  CAS  PubMed  Google Scholar 

  • Johnston I (2017) Humans are ushering in the sixth mass extinction of life on Earth, scientists warn. http://www.independent.co.uk/environment/mass-extinction-humans-causing-earth-deaths-end-times-warning-a7765856.html

  • Kaissling KE (1980) Action of chemicals, including (+) trans Permethrin and DDT, on insect olfactory receptors. In: Insect neurobiology and pesticide action (Neurotox 79). Soc Chem Ind, London, pp 351–358

    Google Scholar 

  • Kaissling KE (2009) Olfactory perireceptor and receptor events in moths: a kinetic model revised. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195:895–922

    Google Scholar 

  • Kaissling KE (2014) Pheromone reception in insects (the example of silk moths). In: Mucignat-Caretta C (ed) Neurobiology of chemical communication. CRC Press, Taylor & Francis, Boca Raton, pp 99–146

    Chapter  Google Scholar 

  • Kaissling KE, Meng LZ, Bestmann HJ (1989) Responses of bombykol receptor cells to (Z,E)-4,6-hexadecadiene and linalool. J Comp Physiol A 165:147–154

    Article  Google Scholar 

  • Karunker I, Benting J, Lueke B, Ponge T, Nauen R, Roditakis E, Vontas J, Gorman K, Denholm I, Morin S (2008) Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem Mol Biol 38:634–644

    Article  CAS  PubMed  Google Scholar 

  • Kramer E (1992) Attractivity of pheromone surpassed by time-patterned application of two nonpheromone compounds. J Insect Behav 5:83–97

    Article  Google Scholar 

  • Kruse SW, Zhao R, Smith DP, Jones DN (2003) Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster. Nat Struct Biol 10:694–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labandeira CC, Sepkoski JJ Jr (1993) Insect diversity in the fossil record. Science 261:310–315

    Article  CAS  PubMed  Google Scholar 

  • La-France D, Shani A, Margalit J (1989) Biological activity of synthetic hydrocarbon mixtures of cuticular components of the female housefly (Musca domestica L.). J Chem Ecol 15:1475–1490

    Article  CAS  PubMed  Google Scholar 

  • Lanter GN (1970) Sex pheromone: abolition of specificity in hybrid bark beetles. Science 169:71–72

    Article  Google Scholar 

  • Lartigue A, Campanacci V, Roussel A, Larsson AM, Jones TA, Tegoni M, Cambillau C (2002) X-ray structure and ligand binding study of a moth chemosensory protein. J Biol Chem 277:32094–32098

    Article  CAS  PubMed  Google Scholar 

  • Lartigue A, Gruez S, Spinelli S, Rivière S, Brossut R, Tegoni M, Cambillau C (2003) The crystal structure of a cockroach pheromone-binding protein suggests a new ligand binding and release mechanism. J Biol Chem 278:30213–30218

    Article  CAS  PubMed  Google Scholar 

  • Lartigue A, Gruez A, Briand L, Blon F, Bezirard V, Walsh M, Pernollet JC, Tegoni M, Cambillau C (2004) Sulfur single-wavelength anomalous diffraction crystal structure of a pheromone-binding protein from the honey bee Apis mellifera L. J Biol Chem 279:4459–4464

    Article  CAS  PubMed  Google Scholar 

  • Laue M, Steinbrecht RA, Ziegelberger G (1994) Immunocytochemical localization of General Odorant-Binding Protein in olfactory sensilla of the silkmoth Antheraea polyphemus. Naturwissenschaften 81:178–180

    CAS  Google Scholar 

  • Laughlin JD, Ha TS, Jones DN, Smith DP (2008) Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 133:1255–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lautenschlager C, Leal WS, Clardy J (2005) Coil-to-helix transition and ligand release of Bombyx mori pheromone-binding protein. Biochem Biophys Res Commun 335:1044–1050

    Article  CAS  PubMed  Google Scholar 

  • Leite NR, Krogh R, Xu W, Ishida Y, Lulek J, Leal WS, Oliva G (2009) Structure of an odorant-binding protein from the mosquito Aedes aegypti suggests a binding pocket covered by a pH-sensitive “lid”. PLoS One 4:e8006

    Google Scholar 

  • Leal WS (1998) Chemical ecology of phytophageous scarab beetles. Annu Rev Entomol 43:39–61

    Article  CAS  PubMed  Google Scholar 

  • Leal WS (2003) Proteins that make sense. In: Blomquist RG, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-the biosynthesis and detection of pheromones and plant volatiles. SanDiego/London, pp 446–476

    Google Scholar 

  • Leal WS (2014) The enigmatic reception of DEET-the gold standard of insect repellents. Curr Opin Insect Sci 6:93–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Leal WS, Matsuyama S, Kuwahara Y, Wakamura S (1992) An amino acid derivative as the sex pheromone of a scarab beetle. Naturwissenschaften 79:184–185

    Article  CAS  Google Scholar 

  • Leal WS, Zarbin PH, Wojtasek H, Ferreira JT (1999) Biosynthesis of scarab beetle pheromones. Eur J Biochem 259:175–180

    Google Scholar 

  • Leal WS, Chen AM, Ishida Y, Chiang VP, Erickson ML, Morgan TI, Tsuruda JM (2005) Kinetics and molecular properties of pheromone binding and release. Proc Natl Acad Sci U S A 102(15):5386–5391

    Google Scholar 

  • Lee Y, Kim SH, Montell C (2010) Avoiding DEET through insect gustatory receptors. Neuron 67:555–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lees RS, Gilles JRL, Hendrichs J, Vreysen MJB, Bourtzis K (2015) Back to the future: the sterile insect technique against mosquito disease vectors. Curr Opin Insect Sci 10:156–162

    Article  PubMed  Google Scholar 

  • Legeay S, Clere N, Hilairet G, Do QT, Bernard P, Quignard JF, Apaire-Marchais V, Lapied B, Faure S (2016) The insect repellent N,N-diethyl-m-toluamide (DEET) induces angiogenesis via allosteric modulation of the M3 muscarinic receptor in endothelial cells. Sci Rep 6:28546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lescop E, Briand L, Pernollet JC, Guittet E (2009) Structural basis of the broad specificity of a general odorant-binding protein from honeybee. Biochemistry 48:2431–2441

    Article  CAS  PubMed  Google Scholar 

  • Liu GX, Picimbon JF (2017) Bacterial origin of chemosensory odor-binding proteins. Gene Transl Bioinform 3:e1548

    Google Scholar 

  • Liu GX, Xuan N, Chu D, Xie HY, Fan ZX, Bi YP, Picimbon JF, Qin YC, Zhong ST, Li YF, Gao ZL, Pan WL, Wang GY, Rajashekar B (2014) Biotype expression and insecticide response of Bemisia tabaci chemosensory protein-1. Arch Insect Biochem Physiol 85:137–151

    Article  CAS  PubMed  Google Scholar 

  • Liu GX, Ma HM, Xie HY, Xuan N, Picimbon JF (2016a) Sequence variation of Bemisia tabaci chemosensory protein 2 in cryptic species B and Q: new DNA markers for whitefly recognition. Gene 576:284–291

    Article  CAS  PubMed  Google Scholar 

  • Liu GX, Ma HM, Xie YN, Xuan N, Xia G, Fan ZX, Rajashekar B, Arnaud P, Offmann B, Picimbon JF (2016b) Biotype characterization, developmental profiling, insecticide response and binding property of Bemisia tabaci chemosensory proteins: role of CSP in insect defense. PLoS One 11:e0154706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu GX, Arnaud P, Offmann B, Picimbon JF (2017) Genotyping and bio-sensing chemosensory proteins in insects. Sensors 17:1801

    Article  CAS  PubMed Central  Google Scholar 

  • Liu SS, De Barro PJ, Xu J, Luan JB, Zang LS, Ruan YM, Wan FH (2007) Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science 318:1769–1772

    Article  CAS  PubMed  Google Scholar 

  • Marceau L, Dohet LA, Grégoire JC (2016) Fallen trees’ last stand against bark beetles. Forest Ecol Manag 359:44–50

    Article  Google Scholar 

  • Martinac B, Saimi Y, Kung C (2008) Ion channels in microbes. Physiol Rev 88:1449–1490

    Article  CAS  PubMed  Google Scholar 

  • Martinez A, Kolvek SJ, Yip CLT, Hopke J, Brown KA, McNeil IA, Osburne MS (2004) Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts. Appl Environ Microbiol 70:2452–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason RT, Fales HM, Jones TH, Pannell LK, Chinn JW, Crews D (1989) Sex pheromones in snakes. Science 245:290–293

    Article  CAS  PubMed  Google Scholar 

  • McKenzie SK, Oxley PR, Kronauer DJC (2014) Comparative genomics and transcriptomics in ants provide new insights into the evolution and function of odorant binding and chemosensory proteins. BMC Genomics 15:718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLean JA, Morgan B, Sweeney JD, Weiler L (1989) Behavior and survival of western spruce budworm, Choristoneura occidentalis Freeman, exposed to an ω-fluorinated pheromone analogue. J Chem Ecol 15:91–103

    Article  CAS  PubMed  Google Scholar 

  • Meurisse N, Couillien D, Grégoire JC (2008) Kairomone traps: a tool for monitoring the invasive spruce bark beetle Dendroctonus micans (Coleoptera: Scolytinae) and its specific predator, Rhizophagus grandis (Coleoptera: Monotomidae). J Appl Ecol 45:537–548

    Article  Google Scholar 

  • Miller DR, Asaro C, Berisford CW (2005) Attraction of Southern pine engravers and associated bark beetles (Coleoptera: Scolytidae) to Ipsenol, Ipsdienol, and Lanierone in Southeastern United States. J Econ Entomol 98:2058–2066

    Article  CAS  PubMed  Google Scholar 

  • Miller DR, Asaro C, Crowe CM, Duerr DA (2011) Bark beetle pheromones and pine volatiles: attractant kairomone lure blend for longhorn beetles (Cerambycidae) in pine stands of the Southeastern United States. J Econ Entomol 104:1245–1257

    Article  CAS  PubMed  Google Scholar 

  • Mohanty S, Zubkov S, Gronenborg AM (2002) The solution NMR structure of Antheraea polyphemus PBP provides new insight into pheromone recognition by pheromone binding proteins. J Mol Biol 337:443–451

    Article  Google Scholar 

  • Montooth KL, Gibbs AG (2003) Cuticular pheromones and water balance in the house fly, Musca domestica. Comp Biochem Physiol A Mol Int Physiol 135:457–465

    Article  CAS  Google Scholar 

  • Moyroud E, Wenzel T, Middleton R, Rudall PJ, Banks H, Reed A, Mellers G, Killoran P, Westwood M, Steiner U, Vignolini S, Glover BJ (2017) Disorder in convergent floral nanostructures enhances signalling to bees. Nature 50:469

    Article  CAS  Google Scholar 

  • Murphy EJ, Booth JC, Davrazou F, Port AM, Jones DN (2013) Interactions of Anopheles gambiae odorant-binding proteins with a human-derived repellent: implications for the mode of action of n,n-diethyl-3-methylbenzamide (DEET). J Biol Chem 288:4475–4485

    Article  CAS  PubMed  Google Scholar 

  • Najar-Rodriguez AJ, Galizia GC, Stierle J, Dorn S (2012) Behavioral and neurophysiological responses of an insect to changing ratios of constituents in host plant-derived volatile mixtures. J Exp Biol 213:3388–3397

    Article  Google Scholar 

  • Nojima S, Robbins PS, Salsbury GA, Morris BD, Roelofs WL, Villani MG (2003) L-leucine methyl ester: the female-produced sex pheromone of the scarab beetle, Phyllophaga lanceolata. J Chem Ecol 29:2439–2446

    Article  CAS  PubMed  Google Scholar 

  • Nolte DJ, Eggers SH, May IR (1973) A locust pheromone: locustol. J Insect Physiol 19:1547–1554

    Article  CAS  Google Scholar 

  • Omondi BA, Majeed S, Ignell R (2015) Functional development of carbon dioxide detection in the maxillary palp of Anopheles gambiae. J Exp Biol 218:2482–2488

    Article  PubMed  PubMed Central  Google Scholar 

  • Paluch G, Bartholomay L, Coats J (2010) Mosquito repellents: a review of chemical structure diversity and olfaction. Pest Manag Sci 66:925–935

    Article  CAS  PubMed  Google Scholar 

  • Pesenti ME, Spinelli S, Bezirard V, Briand L, Pernollet JC, Tegoni M, Cambillau C (2008) Structural basis of the honey bee PBP pheromone and pH-induced conformational change. J Mol Biol 380:158–169

    Article  CAS  PubMed  Google Scholar 

  • Pesenti ME, Spinelli S, Bezirard V, Briand L, Pernollet JC, Campanacci V, Tegoni M, Cambillau C (2009) Queen bee pheromone binding protein pH-induced domain swapping favors pheromone release. J Mol Biol 390:981–990

    Article  CAS  PubMed  Google Scholar 

  • Picimbon JF (1996) La phéromone du mâle facilite l’acceptation du mâle par la femelle chez la pyrale du maïs, Ostrinia nubilalis (Lep., Pyralidae). CIFCA 96. First “Francophone” International Congress on Animal Behaviour, June 9–13th, Laval University, Quebec, Canada

    Google Scholar 

  • Picimbon JF (2002) Les péri-récepteurs chimiosensoriels des insectes. Med Sci 18:1089–1094

    Google Scholar 

  • Picimbon JF (2003) Biochemistry and evolution of CSP and OBP proteins. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-the biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, SanDiego/London, pp 539–566

    Google Scholar 

  • Picimbon JF (2005a) Synthesis of odorant reception-suppressing agents, Odorant-Binding Proteins (OBPs) and Chemosensory Proteins (CSPs): molecular targets for pest management. In: Regnault-Roger C, Philogène B, Vincent C (eds) Biopesticides of plant origin. Intercept-Lavoisier, Hampshire/Paris/Secaucus, pp 245–266

    Google Scholar 

  • Picimbon JF (2005b) Olfaction & Phytoprotection. Habilitation à Diriger des Recherches (HDR; Biochemistry & Environmental Science). University of Pau and Pays de l’Adour (UPPA; Dir. C. Regnault-Roger), France

    Google Scholar 

  • Picimbon JF (2014a) RNA mutations: source of life. Gene Technol 3:112

    Google Scholar 

  • Picimbon JF (2014b) RNA mutations in the moth pheromone gland. RNA Dis 1:e240

    Google Scholar 

  • Picimbon JF (2014c) Renaming Bombyx mori chemosensory proteins. Int J Bioorganic Chem Mol Biol 2:201

    Google Scholar 

  • Picimbon JF (2016) Mutations in the insect transcriptome. J Clin Exp Pathol 6:3

    Google Scholar 

  • Picimbon JF, Leal WS (1999) Olfactory soluble proteins of cockroaches. Insect Biochem Mol Biol 29:973–978

    Article  CAS  Google Scholar 

  • Picimbon JF, Gadenne C (2002) Evolution of noctuid Pheromone Binding Proteins: identification of PBP in the black cutworm moth, Agrotis ipsilon. Insect Biochem Mol Biol 32:839–846

    Article  CAS  PubMed  Google Scholar 

  • Picimbon JF, Regnault-Roger C (2008) Composés sémiochimiques volatils, phytoprotection et olfaction: cibles moléculaires de la lutte intégrée. In: Regnault-Roger V, Philogène B, Vincent C (eds) Biopesticides d’origine végétale. Lavoisier Tech and Doc, Paris, pp 383–415

    Google Scholar 

  • Picimbon JF, Bécard JM, Sreng L, Clément JL, Gadenne C (1995) Juvenile hormone stimulates pheromonotropic brain factor release in the black cutworm moth. J Insect Physiol 41:377–382

    Article  CAS  Google Scholar 

  • Picimbon JF, Gadenne C, Bécard JM, Clément JL, Sreng L (1997) Sex pheromone of the French black cutworm moth, Agrotis ipsilon (Lepidoptera, Noctuidae): identification and regulation of a multicomponent blend. J Chem Ecol 23:211–230

    Article  CAS  Google Scholar 

  • Picimbon JF, Dietrich K, Breer H, Krieger J (2000a) Chemosensory proteins of Locusta migratoria (Orthoptera: Acrididae). Insect Biochem Mol Biol 30:233–241

    Article  CAS  PubMed  Google Scholar 

  • Picimbon JF, Dietrich K, Angeli S, Scaloni A, Krieger J, Pelosi P, Breer H (2000b) Purification and molecular cloning of chemosensory proteins in Bombyx mori. Arch Insect Biochem Physiol 44:120–129

    Article  CAS  PubMed  Google Scholar 

  • Picimbon JF, Dietrich K, Krieger J, Breer H (2001) Identity and expression pattern of Chemosensory Proteins in Heliothis virescens (Lepidoptera: noctuidae). Insect Biochem Mol Biol 31:1173–1181

    Article  CAS  PubMed  Google Scholar 

  • Pickett JA, Wadhams LJ, Woodcock CM (1992) The chemical ecology of aphids. Annu Rev Entomol 37:67–90

    Article  CAS  Google Scholar 

  • Plettner E (2003) The peripheral pheromone olfactory system in insects: targets for species-selective insect control agents. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-the biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, SanDiego/London, pp 477–507

    Google Scholar 

  • Plettner E, Lazar J, Prestwich EG, Prestwich GD (2000) Discrimination of pheromone enantiomers by two pheromone binding proteins from the gypsy moth Lymantria dispar. Biochemistry 39:8953–8962

    Article  CAS  PubMed  Google Scholar 

  • Pollack GS (2010) Acoustic communication in insects: neuroethology. In: Encyclopedia of animal behavior. Academic, London, pp 1–6

    Google Scholar 

  • Pophof B (2002) Moth pheromone binding proteins contribute to the excitation of olfactory receptor cells. Naturwissenschaften 89:515–518

    Article  CAS  PubMed  Google Scholar 

  • Pophof B (2004) Pheromone-binding proteins contribute to the activation of olfactory receptor neurons in the silkmoths Antheraea polyphemus and Bombyx mori. Chem Senses 29:117–125

    Article  CAS  PubMed  Google Scholar 

  • Popkin G (2017) Bacteria use brainlike bursts of electricity to communicate. Quanta, September 5

    Google Scholar 

  • Prentice H, Modi JP, Wu JY (2015) Mechanisms of neuronal protection against excitotoxicity, endoplasmic reticulum stress, and mitochondrial dysfunction in stroke and neurodegenerative diseases. Oxidative Med Cell Longev 2015:964518

    Article  CAS  Google Scholar 

  • Prestwich GD, Carvalho JF, Ding YS, Hendricks DE (1986) Acyl fluorides as reactive mimics of aldehyde pheromones: hyperactivation and aphrodisiac in Heliothis virescens. Experientia 42:964–966

    Article  CAS  Google Scholar 

  • Prindle A, Liu J, Asally M, Ly S, Garcia-Ojalvo J, Süel GM (2015) Ion channels enable electrical communication in bacterial communities. Nature 527:59–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman S, Luetje CR (2017) Mutant cycle analysis identifies a ligand interaction site in an odorant receptor of the malaria vector Anopheles gambiae. J Biol Chem 292:18916–18923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren D, Navarro B, Xu H, Yue L, Shi Q, Clapham DE (2001) A prokaryotic voltage-gated sodium channel. Science 294:2372–2375

    Article  CAS  PubMed  Google Scholar 

  • Renou M, Guerrero A (2000) Insect parapheromones in olfaction research and semiochemicals-based pest control strategies. Annu Rev Entomol 48:605–630

    Article  Google Scholar 

  • Robert D (2010) Hearing: insects. In: Encyclopedia of animal behavior. Academic, New York, pp 49–53

    Chapter  Google Scholar 

  • Roelofs WL (1995) Chemistry of sex attraction. Proc Natl Acad Sci U S A 92:44–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rono E, Njagi PGN, Bashir MO, Hassanali A (2008) Concentration-dependent parsimonious releaser roles of gregarious male pheromone of the desert locust, Schistocerca gregaria. J Insect Physiol 54:162–168

    Article  CAS  PubMed  Google Scholar 

  • Røstelien T, Stranden M, Borg-Karlson AK, Mustaparta H (2005) Olfactory receptor neurons in two heliothine moth species responding selectively to aliphatic green leaf volatiles, aromatic compounds, monoterpenes and sesquiterpenes of plant origin. Chem Senses 30:1–19

    Article  CAS  Google Scholar 

  • Royer L, McNeil JN (1992) Evidence of a male sex pheromone in the European corn borer, Ostrinia nubilalis (Hubner) (Lepidoptera: Pyralidae). Can Entomol 124:113–116

    Article  Google Scholar 

  • Royer L, McNeil JN (1993) Male investment in the European corn borer Ostrinia nubilalis (Lepidoptera: Pyralidae): on female longevity and reproductive performance. Funct Ecol 7:209–215

    Article  Google Scholar 

  • Sandler BH, Nikonova L, Leal WS, Clardy J (2000) Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem Biol 7:143–151

    Article  CAS  PubMed  Google Scholar 

  • Sanes JT, Plettner E (2016) Gypsy moth pheromone-binding protein-ligand interactions: pH profiles and simulations as tools for detecting polar interactions. Arch Biochem Biophys 606:53–63

    Article  CAS  PubMed  Google Scholar 

  • Sanford JL, Shields VD, Dickens JC (2013) Gustatory receptor neuron responds to DEET and other insect repellents in the yellow-fever mosquito, Aedes aegypti. Naturwissenschaften 100:269–273

    Article  CAS  PubMed  Google Scholar 

  • Schmidt AKD, Balakrishnan R (2014) Ecology of acoustic signalling and the problem of masking interference in insects. J Comp Physiol A 201:133–142

    Article  Google Scholar 

  • Seeley TD (1974) Atmospheric carbon dioxide regulation in honey-bee (Apis mellifera) colonies. J Insect Physiol 20:2301–2305

    Article  CAS  PubMed  Google Scholar 

  • Seidelmann K (2006) The courtship-inhibiting pheromone is ignored by female-deprived gregarious desert locust males. Biol Lett 2:525–527

    Article  PubMed  PubMed Central  Google Scholar 

  • Seidelmann K, Luber K, Ferenz HJ (2000) Analysis of release and role of benzyl cyanide in male desert locusts, Schistocerca gregaria. J Chem Ecol 26:1897–1910

    Article  CAS  Google Scholar 

  • Seybold SJ, Vanderwel D (2003) Biosynthesis and endocrine regulation of pheromone production in the Coleoptera. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-the biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, SanDiego/London, pp 137–200

    Google Scholar 

  • Shishika D, Manoukis NC, Butail S, Paley DA (2014) Male motion coordination in anopheline mating swarms. Sci Rep 4:6318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson SJ, Sword GA (2008) Locusts. Curr Biol 18:R364–R366

    Article  CAS  PubMed  Google Scholar 

  • Simpson SJ, Despland E, Hägele BF, Dodgson T (2001) Gregarious behavior in desert locusts is evoked by touching their back legs. Proc Natl Acad Sci U S A 98:3895–3897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh NK, Eliash N, Kamer Y, Zaidman I, Plettner E, Soroker V (2015) The effect of DEET on chemosensing of the honey bee and its parasite Varroa destructor. Apidologie 46:380–391

    Google Scholar 

  • Sivinski JM, Petersson E (1997) Mate choice and species isolation in swarming insects. In: Chloe JC, Crespi BJ (eds) The evolution of mating systems in insects and arachnids. Cambridge University Press, Cambridge, pp 294–309

    Chapter  Google Scholar 

  • Stange G (1997) Effects of changes in atmospheric carbon dioxide on the location of hosts by the moth, Cactoblastis cactorum. Oecologia 110:539–545

    Article  PubMed  Google Scholar 

  • Stange G, Diesendorf M (1973) The response of the honeybee antennal CO2-receptors to N2O and Xe. J Comp Physiol 86:139–158

    Article  CAS  Google Scholar 

  • Stange G, Stowe S (1999) Carbon-dioxide sensing structures in terrestrial arthropods. Micros Res Tech 47:416–427

    Article  CAS  Google Scholar 

  • Steinbrecht RA (1997) Pore structures in insect olfactory sensilla: a review of data and concepts. Int J Insect Morphol Embryol 26:229–245

    Article  Google Scholar 

  • Steinbrecht RA, Laue M, Ziegelberger G (1995) Immunolocalization of pheromone-binding protein and general odorant-binding protein in olfactory sensilla of the silk moths Antheraea and Bombyx. Cell Tissue Res 282:203–217

    Article  CAS  Google Scholar 

  • Stopfler M (2011) Malaria: mosquito bamboozled. Nature 474:40–41

    Article  CAS  Google Scholar 

  • Su CY, Menuz K, Carlson JR (2009) Olfactory perception: receptors, cells and circuits. Cell 139:45–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su CY, Martelli C, Emonet T, Carlson JR (2011) Temporal coding of odor mixtures in an olfactory receptor neuron. Proc Natl Acad Sci U S A 108:5075–5080

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun M, Liu Y, Wang G (2013) Expression patterns and binding properties of three pheromone binding proteins in the diamondback moth, Plutella xyllotella. J Insect Physiol 59:46–55

    Article  CAS  PubMed  Google Scholar 

  • Svensson BG, Petersson E (1994) Mate choice tactics and swarm size: a model and a test in a dance fly. Behav Ecol Sociobiol 35:161–168

    Article  Google Scholar 

  • Symonds MRE, Gitau-Clarke CW (2016) The evolution of aggregation pheromone diversity in bark beetles. Adv Insect Physiol 50:195–234

    Article  Google Scholar 

  • Tasin M, Bäckman AC, Anfora GF, Carlin S, Ioriatti C, Witzgall P (2010) Attraction of female grapevine moth to common and specific olfactory cues from 2 host plants. Chem Senses 35:57–64

    Article  PubMed  Google Scholar 

  • Tilman D, Clark M, Williams DR, Kimmel K, Polasky S, Packer C (2017) Future threats to biodiversity and pathways to their prevention. Nature 546:73–81

    Article  CAS  PubMed  Google Scholar 

  • Tomaselli S, Crescenzi O, Sanfelice D, Ab E, Wechselberger R, Angeli S, Scaloni A, Boelens R, Tancredi T, Pelosi P, Picone D (2006) Solution structure of a chemosensory protein from the desert locust Schistocerca gregaria. Biochemistry 45:1606–1613

    Article  CAS  Google Scholar 

  • Tsitsanou KE, Thireou T, Drakou CE, Koussis K, Keramioti MV, Leonidas DD, Eliopoulos E, Iatrou K, Zographos SE (2012) Anopheles gambiae odorant binding protein crystal complex with the synthetic repellent DEET: implications for structure-based design of novel mosquito repellents. Cell Mol Life Sci 69:283–297

    Article  CAS  PubMed  Google Scholar 

  • Ulland S, Ian E, Stranden M, Borg-Karlson AK, Mustaparta H (2008) Plant volatiles activating specific olfactory receptor neurons of the cabbage moth Mamestra brassicae L. (Lepidopera, Noctuidae). Chem Senses 33:509–522

    Article  CAS  PubMed  Google Scholar 

  • Vandermoten S, Mescher MC, Francis F, Haubruge E, Verheggen FJ (2012) Aphid alarm pheromone: an overview of current knowledge on biosynthesis and functions. Insect Biochem Mol Biol 42:155–163

    Article  CAS  PubMed  Google Scholar 

  • Vieira FG, Forêt S, He XL, Rozas J, Field LM, Zhou JJ (2012) Unique features of odorant-binding proteins of the parasitoid wasp Nasonia vitripennis revealed by genome annotation and comparative analysis. PLoS One 7:e43034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villella A, Hall JC (2008) Neurogenetics of courtship and mating in Drosophila. Adv Genet 62:67–184

    Article  CAS  PubMed  Google Scholar 

  • Vité JP, Francke W (1976) The aggregation pheromones of bark beetles: progress and problems. Naturwissenschaften 63:550–555

    Article  Google Scholar 

  • Vogel G (2017) Where have all the insects gone? Science 356:576–579

    Article  CAS  PubMed  Google Scholar 

  • Vogt RG (2003) Biochemical diversity of odor detection: OBPs, ODEs and SNMPs. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-the biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, SanDiego/London, pp 391–446

    Google Scholar 

  • Vogt RG (2005) Molecular basis of pheromone detection in insects. In: Gilbert LI, Iatrou K, Gill S (eds) Comprehensive insect physiology, biochemistry, pharmacology and molecular biology. Elsevier, London, pp 753–804

    Google Scholar 

  • Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163

    Article  CAS  PubMed  Google Scholar 

  • Vogt RG, Köhne AC, Dubnau JT, Prestwich GD (1989) Expression of pheromone binding proteins during antennal development in the gypsy moth Lymantria dispar. J Neurosci 9:3332–3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt RG, Prestwich GD, Lerner MR (1991) Odorant-binding-protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. J Neurobiol 22:74–84

    Article  CAS  PubMed  Google Scholar 

  • Vogt RG, Vieyra M, Anderson D (2002) New discoveries in the olfactory capability of sea turtles, PFRP Newsletters, April–June 2002b. University of Hawai’i at Mãnoa, Honolulu, pp 1–12

    Google Scholar 

  • Wakamura S, Struble DL, Matsuura H, Sato M, Kegasawa K (1986) Sex pheromone of the black cutworm Moth, Agrotis ipsilon HUFNAGEL (Lepidoptera: Noctuidae): attractant synergist and improved formulation. Appl Entomol Zool 21:299–304

    Google Scholar 

  • Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc Natl Acad Sci U S A 105:11466–11473

    Article  PubMed  PubMed Central  Google Scholar 

  • Walter GH, Benfield MD (2006) Temporal host plant use in three polyphagous Heliothinae, with special reference to Helicoverpa punctigera (Wallengren) (Noctuidae: Lepidoptera). Austral Ecol 19:458–465

    Article  Google Scholar 

  • Wogulis M, Morgan T, Ishida Y, Leal WS, Wilson DK (2006) The crystal structure of an odorant binding protein from Anopheles gambiae: evidence for a common ligand release mechanism. Biochem Biophys Res Commun 339:157–164

    Article  CAS  PubMed  Google Scholar 

  • Wojtasek H, Leal WS (1999) Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes. J Biol Chem 274:30950–30956

    Article  CAS  PubMed  Google Scholar 

  • Wojtasek H, Picimbon JF, Leal WS (1999) Identification and cloning of odorant binding proteins from the scarab beetle Phyllopertha diversa. Biochem Biophys Res Commun 263:832–837

    Article  CAS  PubMed  Google Scholar 

  • Wyatt TD (1997) Putting pheromones to work: paths forward for direct control. In: Cardé RT, Minks AK (eds) Insect pheromone research-new directions. Chapman & Hall, New York, pp 445–459

    Chapter  Google Scholar 

  • Wyatt TD (2005) Pheromones: convergence and contrasts in insects and vertebrates. In: Mason RT, LeMaster MP, Müller-Schwarze D (eds) Chemical signals in vertebrates. Springer, New York, pp 7–20

    Chapter  Google Scholar 

  • Xu P, Atkinson R, Jones DN, Smith DP (2005) Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45:193–200

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Choo YM, De La Rosa A, Leal WS (2014) Mosquito odorant receptor for DEET and methyl jasmonate. Proc Natl Acad Sci U S A 111:16592–16597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xuan N, Bu X, Liu YY, Yang X, Liu GX, Fan ZX, Bi YP, Yang LQ, Lou QN, Rajashekar B, Leppik G, Kasvandik S, Picimbon JF (2014) Molecular evidence of RNA editing in Bombyx chemosensory protein family. PLoS One 9:e86932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xuan N, Guo X, Xie HY, Lou QN, Lu XB, Liu GX, Picimbon JF (2015) Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins. Insect Sci 22:203–219

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Feng H, Sun H, Xi J, Cao Y, Li K (2012) Functional analysis of general odorant binding protein 2 from the meadow moth, Loxostege sticticalis L. (Lepidoptera: Pyralidae). PLoS One 7:e33589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou JJ, Zhang GA, Huang W, Birkett MA, Field LM, Pickett JA, Pelosi P (2004) Revisiting odorant-binding protein LUSH of Drosophila melanogaster: evidence for odour recognition and discrimination. FEBS Lett 558:23–26

    Article  CAS  PubMed  Google Scholar 

  • Zhou JJ, Roberson G, He X, Dufour S, Hooper AM, Pickett JA, Keep NH, Field LM (2009) Characterisation of Bombyx mori odorant-binding-proteins reveals that a general odorant-binding-protein discriminates between sex pheromone components. J Mol Biol 389:529–545

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Ban L, Son LM, Liu Y, Pelosi P, Wang G (2016) General odorant-binding proteins and sex pheromone guide larvae of Plutella xylostella to better food. Insect Biochem Mol Biol 72:10–19

    Article  CAS  PubMed  Google Scholar 

  • Ziemba BP, Murphy EJ, Edlin HT, Jones DNM (2012) A novel mechanism of ligand binding and release in the odorant binding protein 20 from the malaria mosquito Anopheles gambiae. Protein Sci 22:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Ackowledgements

Heartfelt thanks to Prof. Em. Karl-Ernst Kaissling (Max Planck Institute of Seewiesen, Germany) for inspiration, discussion and most helpful comments on early versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Picimbon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, G., Arnaud, P., Offmann, B., Picimbon, JF. (2019). Pheromone, Natural Odor and Odorant Reception Suppressing Agent (ORSA) for Insect Control. In: Picimbon, JF. (eds) Olfactory Concepts of Insect Control - Alternative to insecticides. Springer, Cham. https://doi.org/10.1007/978-3-030-05165-5_12

Download citation

Publish with us

Policies and ethics