Skip to main content

Construction of Some Codes Suitable for Both Side Channel and Fault Injection Attacks

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11321)

Abstract

Using algebraic curves over finite fields, we construct some codes suitable for being used in the countermeasure called Direct Sum Masking which allows, when properly implemented, to protect the whole cryptographic block cipher algorithm against side channel attacks and fault injection attacks, simultaneously. These codes address a problem which has its own interest in coding theory.

Keywords

  • SCA
  • FIA
  • MDS code
  • Algebraic geometry code

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-05153-2_5
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-05153-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)

References

  1. Bhasin, S., Danger, J.-L., Guilley, S., Najm, Z., Ngo, X.T.: Linear complementary dual code improvement to strengthen encoded circuit against hardware Trojan horses. In: IEEE International Symposium on Hardware Oriented Security and Trust (HOST), 5–7 May 2015

    Google Scholar 

  2. Bringer, J., Carlet, C., Chabanne, H., Guilley, S., Maghrebi, H.: Orthogonal direct sum masking. In: Naccache, D., Sauveron, D. (eds.) WISTP 2014. LNCS, vol. 8501, pp. 40–56. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43826-8_4

    CrossRef  Google Scholar 

  3. Carlet, C., Daif, A., Guilley, S., Tavernier, C.: Polynomial direct sum masking to protect against both SCA and FIA. J. Cryptogr. Eng. (2018). https://doi.org/10.1007/s13389-018-0194-9

  4. Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 10(1), 131–150 (2016)

    MathSciNet  CrossRef  Google Scholar 

  5. Carlet, C., Guilley, S.: Satatistical properties of side-channel and fault injection attacks using coding theory. Cryptogr. Commun. 10, 909–933 (2018)

    MathSciNet  CrossRef  Google Scholar 

  6. Carlet, C., Güneri, C., Özbudak, F., Özkaya, B., Solé, P.: On linear complementary pairs of codes. IEEE Trans. Inf. Theory, to appear

    Google Scholar 

  7. Carlet, C., Güneri, C., Özbudak, F., Solé, P.: A new concatenated type construction for LCD codes and isometry codes. Discrete Math. 341, 830–835 (2018)

    MathSciNet  CrossRef  Google Scholar 

  8. Carlet, C., Mesnager, S., Tang, C., Qi, Y.: Euclidean and Hermitian LCD MDS codes. Des. Codes Cryptogr. 86, 1–4 (2018). https://doi.org/10.1007/s10623-018-0463-8

    MathSciNet  CrossRef  MATH  Google Scholar 

  9. Carlet, C., Mesnager, S., Tang, C., Qi, Y.: New characterization and parametrization of LCD codes. IEEE Trans. Inf. Theory, vol. To appear. https://arxiv.org/abs/1709.03217

  10. Carlet, C., Mesnager, S., Tang, C., Qi, Y., Pellikaan, R.: Linear codes over \(\mathbb{F}_q\) are equivalent to LCD codes for \(q>3\). IEEE Trans. Inf. Theory 64(4), 3010–3017 (2018)

    CrossRef  Google Scholar 

  11. Ding, C., Li, C., Li, S.: LCD Cyclic codes over finite fields. arXiv:1608. 0217v1 [cs.IT]

  12. Güneri, C., Özkaya, B., Solé, P.: Quasi-cyclic complementary dual codes. Finite Fields Appl. 42, 67–80 (2016)

    MathSciNet  CrossRef  Google Scholar 

  13. Güneri, C., Özbudak, F., Özkaya, B., Saçıikara, E., Sepasdar, Z., Solé, P.: Structure and performance of generalized quasi-cyclic codes. Finite Fields Appl. 47, 183–202 (2017)

    MathSciNet  CrossRef  Google Scholar 

  14. Li, S., Ding, C., Liu, H.: A family of reversible BCH codes. arXiv:1608.02169v1 [cs.IT]

  15. Li, S., Ding, C., Liu, H.: Parameters of two classes of LCD BCH codes. arXiv:1608.02670 [cs.IT]

  16. Mesnager, S., Tang, C., Qi, Y.: Complementary dual algebraic geometry codes. IEEE Trans. Inf. Theory 64(4), 2390–2397 (2018)

    MathSciNet  CrossRef  Google Scholar 

  17. Jin, L.: Construction of MDS codes with complementary duals. IEEE Trans. Inf. Theory 63(5), 2843–2847 (2016)

    MathSciNet  MATH  Google Scholar 

  18. SECODE Project Report: Preliminary assesment of the candidate codes with respect to fault injection attacks, December 2017

    Google Scholar 

  19. Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  20. Yang, X., Massey, J.L.: The condition for a cyclic code to have a complementary dual. J. Discrete Math. 126, 391–393 (1994)

    MathSciNet  CrossRef  Google Scholar 

Download references

Acknowledgement

Güneri and Özbudak are supported by the TÜBİTAK project 215E200, which is associated with the SECODE project in the scope of the CHIST-ERA Program. Carlet and Mesnager are also supported by the SECODE Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferruh Özbudak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Carlet, C., Güneri, C., Mesnager, S., Özbudak, F. (2018). Construction of Some Codes Suitable for Both Side Channel and Fault Injection Attacks. In: Budaghyan, L., Rodríguez-Henríquez, F. (eds) Arithmetic of Finite Fields. WAIFI 2018. Lecture Notes in Computer Science(), vol 11321. Springer, Cham. https://doi.org/10.1007/978-3-030-05153-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05153-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05152-5

  • Online ISBN: 978-3-030-05153-2

  • eBook Packages: Computer ScienceComputer Science (R0)