Bhasin, S., Danger, J.-L., Guilley, S., Najm, Z., Ngo, X.T.: Linear complementary dual code improvement to strengthen encoded circuit against hardware Trojan horses. In: IEEE International Symposium on Hardware Oriented Security and Trust (HOST), 5–7 May 2015
Google Scholar
Bringer, J., Carlet, C., Chabanne, H., Guilley, S., Maghrebi, H.: Orthogonal direct sum masking. In: Naccache, D., Sauveron, D. (eds.) WISTP 2014. LNCS, vol. 8501, pp. 40–56. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43826-8_4
CrossRef
Google Scholar
Carlet, C., Daif, A., Guilley, S., Tavernier, C.: Polynomial direct sum masking to protect against both SCA and FIA. J. Cryptogr. Eng. (2018). https://doi.org/10.1007/s13389-018-0194-9
Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 10(1), 131–150 (2016)
MathSciNet
CrossRef
Google Scholar
Carlet, C., Guilley, S.: Satatistical properties of side-channel and fault injection attacks using coding theory. Cryptogr. Commun. 10, 909–933 (2018)
MathSciNet
CrossRef
Google Scholar
Carlet, C., Güneri, C., Özbudak, F., Özkaya, B., Solé, P.: On linear complementary pairs of codes. IEEE Trans. Inf. Theory, to appear
Google Scholar
Carlet, C., Güneri, C., Özbudak, F., Solé, P.: A new concatenated type construction for LCD codes and isometry codes. Discrete Math. 341, 830–835 (2018)
MathSciNet
CrossRef
Google Scholar
Carlet, C., Mesnager, S., Tang, C., Qi, Y.: Euclidean and Hermitian LCD MDS codes. Des. Codes Cryptogr. 86, 1–4 (2018). https://doi.org/10.1007/s10623-018-0463-8
MathSciNet
CrossRef
MATH
Google Scholar
Carlet, C., Mesnager, S., Tang, C., Qi, Y.: New characterization and parametrization of LCD codes. IEEE Trans. Inf. Theory, vol. To appear. https://arxiv.org/abs/1709.03217
Carlet, C., Mesnager, S., Tang, C., Qi, Y., Pellikaan, R.: Linear codes over \(\mathbb{F}_q\) are equivalent to LCD codes for \(q>3\). IEEE Trans. Inf. Theory 64(4), 3010–3017 (2018)
CrossRef
Google Scholar
Ding, C., Li, C., Li, S.: LCD Cyclic codes over finite fields. arXiv:1608. 0217v1 [cs.IT]
Güneri, C., Özkaya, B., Solé, P.: Quasi-cyclic complementary dual codes. Finite Fields Appl. 42, 67–80 (2016)
MathSciNet
CrossRef
Google Scholar
Güneri, C., Özbudak, F., Özkaya, B., Saçıikara, E., Sepasdar, Z., Solé, P.: Structure and performance of generalized quasi-cyclic codes. Finite Fields Appl. 47, 183–202 (2017)
MathSciNet
CrossRef
Google Scholar
Li, S., Ding, C., Liu, H.: A family of reversible BCH codes. arXiv:1608.02169v1 [cs.IT]
Li, S., Ding, C., Liu, H.: Parameters of two classes of LCD BCH codes. arXiv:1608.02670 [cs.IT]
Mesnager, S., Tang, C., Qi, Y.: Complementary dual algebraic geometry codes. IEEE Trans. Inf. Theory 64(4), 2390–2397 (2018)
MathSciNet
CrossRef
Google Scholar
Jin, L.: Construction of MDS codes with complementary duals. IEEE Trans. Inf. Theory 63(5), 2843–2847 (2016)
MathSciNet
MATH
Google Scholar
SECODE Project Report: Preliminary assesment of the candidate codes with respect to fault injection attacks, December 2017
Google Scholar
Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Heidelberg (1993)
MATH
Google Scholar
Yang, X., Massey, J.L.: The condition for a cyclic code to have a complementary dual. J. Discrete Math. 126, 391–393 (1994)
MathSciNet
CrossRef
Google Scholar