Skip to main content

Chemical Structure and Toxicity of Nanomaterials Used in Food and Food Products

  • Chapter
  • First Online:
Nanomaterials: Ecotoxicity, Safety, and Public Perception

Abstract

There are many areas for potential applications of nanomaterials in food industry , such as food processing, food packaging and nutrient supplementation. Food nanotechnology is still a growing area, which still needs clarification, definition and standardization from larger nanotechnology spectrum. Due to the lack of knowledge on nanomaterials and their usage inside complex matrix of food, health risk and toxicity of nanomaterials is becoming main parameters, which need to be defined, identified, and controlled for every single and novel application. Unfortunately, food matrix is complex and application of nanomaterials in the food matrix is also novel and unique for every specific application that is why every single specific application need to have its own investigation, classification, determination and toxicological studies. This chapter summarizes the application of nanomaterials in food industry and potential toxicological effect of nanomaterials especially regarding food industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anonymous A (2017). https://www.foodpackagingforum.org/news/regulation-of-nanomaterials-in-the-eu, 19 Sept 2018

  • Anonymous B (2017). https://ec.europa.eu/jrc/en/science-update/how-are-nanomaterials-regulated-eu, 19 Sept 2018

  • Anyaogu KC, Fedorov AV, Neckers DC (2008) Synthesis, characterization, and antifouling potential of functionalized copper nanoparticles. Langmuir 24(8):4340–4346

    Article  CAS  PubMed  Google Scholar 

  • Bajpai SK, Chand N, Chaurasia V (2010) Investigation of water vapor permeability and antimicrobial property of zinc oxide nanoparticles-loaded chitosan-based edible film. J Appl Polym Sci 115:674–683

    Article  CAS  Google Scholar 

  • Balbus JM, Maynard AD, Colvin VL, Castranova V, Daston GP, Denison RA, Dreher KL, Goering PL, Goldberg AM, Kulinowski KM et al (2007) Meeting report: hazard assessment for nanoparticles—report from an interdisciplinary workshop. Environ Health Perspect 115(11):1654–1659

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C, ten Voorde SECG, Wijnhoven SWP, Marvin HJP, Sips AJAM (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62

    Article  CAS  PubMed  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):17–71

    Article  Google Scholar 

  • Carbone M, Donia DT, Sabbatella G, Antiochia R (2016) Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ Sci 28:273–279

    Article  Google Scholar 

  • Cárdenas G, Díaz J, Meléndrez M, Cruzat C, Cancino AG (2009) Colloidal Cu nanoparticles/chitosan composite film obtained by microwave heating for food package applications. Polym Bull 62:511

    Article  CAS  Google Scholar 

  • Chau C-F, Wu S-H, Yen G-C (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18:269–280

    Article  CAS  Google Scholar 

  • Chaudhry Q, George C, Watkins R (2007) Nanotechnology regulation—developments in the United Kingdom. In: Hodge GA, Bowman DM, Ludlow K (eds) New global frontiers in regulation: the age of nanotechnology. Edward Elgar, Cheltenham, pp 212–238

    Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25(3):241–258

    Article  CAS  Google Scholar 

  • Chaurasia V, Chand N, Bajpai SK (2010) Water sorption properties and antimicrobial action of zinc oxide nanoparticles-loaded cellulose acetate films. J Macromol Sci Part A Pure Appl Chem 47:309–317

    Article  CAS  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17(21):5255–5262

    Article  CAS  Google Scholar 

  • Communication from the Commission—Towards a European strategy for nanotechnology (2004) Luxembourg: Office for Official Publications of the European Communities 2004, p 24

    Google Scholar 

  • Cui D, Tian F, Ozkan CS, Wang M, Gao H (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155(1):73–85

    Article  CAS  PubMed  Google Scholar 

  • Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012) Nanotechnologies in the food industry recent developments, risks and regulation. Trends Food Sci Technol 24:30–46

    Article  CAS  Google Scholar 

  • Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398:589–605

    Article  CAS  PubMed  Google Scholar 

  • Donaldson K, Stone V, Clouter A, Renwick L, MacNee W (2001) Ultrafine particles. Occup Environ Med 58(3):211–216. 199

    Article  Google Scholar 

  • Droval G, Aranberri I, Bilbao A, German L, Verelst M, Dexpert-Ghys J (2008) Antimicrobial activity of nanocomposites: poly(amide) 6 and low density poly(ethylene) filled with zinc oxide e-Polymer:128

    Google Scholar 

  • Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2010) Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Sci Emerg Technol 11:742–748

    Article  CAS  Google Scholar 

  • Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2011) Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control 22(3–4):408–413

    Article  CAS  Google Scholar 

  • Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromán C, Moya JS (2009) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20:50

    Google Scholar 

  • Evans SM, Ashwood P, Warley A, Berisha F, Thompson RP, Powell JJ (2002) The role of dietary microparticles calcium in apoptosis interleukin-1beta release of intestinal macrophages. Gastroenterology 1235:1543–1553

    Article  CAS  Google Scholar 

  • Fu G, Vary PS, Lin C-T (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109:8889–8898

    Article  CAS  PubMed  Google Scholar 

  • Galeano B, Korff E, Nicholson WL (2003) Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver- and zinc-containing zeolite formulation. Appl Environ Microbiol 69:4329–4331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gergely A, Chaudhry Q, Bowman DM (2010) Regulatory perspectives on nanotechnologies in food and food contact materials. In: Hodge GA, Bowman BM, Maynard AD (eds) International handbook on regulating technologies, Edward Elgar, Cheltenham, 321–341

    Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo J-C, Barber DS (2008) Nanomaterials in the environment, effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27(9):1972–1978

    Article  CAS  PubMed  Google Scholar 

  • Gurr JR, Wang ASS, Chen CH, Jan KY (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73

    Article  CAS  PubMed  Google Scholar 

  • Hamal DB, Haggstrom JA, Marchin GL, Ikenberry MA, Hohn K, Klabunde KJ (2010) A multifunctional biocide/sporocide and photocatalyst based on titanium dioxide (TiO2) codoped with silver, carbon, and sulfur. Langmuir 26(4):2805–2810

    Article  CAS  PubMed  Google Scholar 

  • Handy RD, Shaw BJ (2007) Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology. Health Risk Soc 9:125–144

    Article  Google Scholar 

  • Health Council Netherlands (2006) Health significance of nanotechnologies. The Hague: Health Council of the Netherlands, Publication No. 2006/06

    Google Scholar 

  • Higashisaka K, Yoshioka Y, Tsutsumi Y (2015) Applications and safety of nanomaterials used in the food industry, ©2015 Food Safety Commission, Cabinet Office, Government of Japan. https://doi.org/10.14252/foodsafetyfscj.2015005

    Article  Google Scholar 

  • Hodge G, Bowman D, Ludlow K (2007) New global frontiers in regulation: In: The age of nanotechnology. Edward Elgar, Cheltenham

    Book  Google Scholar 

  • Huang L, Li D-Q, Evans DG, Duan X (2005a) Preparation of highly dispersed MgO and its bactericidal properties. Eur Phys J D 34:321–323

    Article  CAS  Google Scholar 

  • Huang L, Li D-Q, Lin Y-J, Wie M, Evans DG, Duan X (2005b) Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 99(5):986–993

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Hoshino M, Takahashi H, Noguchi T, Murata T, Kanzaki Y, Hamashima H, Sasatsu M (2002) Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions. J Inorg Biochem 92:37–42

    Article  CAS  PubMed  Google Scholar 

  • Jin T, Sun D, Su JY, Zhang H, Sue H-J (2009) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J Food Sci 74:M46–M52

    Article  CAS  PubMed  Google Scholar 

  • Jones CF, Grainger DW (2009) In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 61:438–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17):8670–8673

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Mauter MS, Elimelech M (2009) Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ Sci Technol 43(7):2648–2653

    Article  CAS  PubMed  Google Scholar 

  • Kangwansupamonkon W, Lauruengtana V, Surassmo S, Ruktanonchai U (2009) Antibacterial effect of apatite-coated titanium dioxide for textiles applications. Nanomed Nanotechnol Biol Med 5:240–249

    Article  CAS  Google Scholar 

  • Kim B, Kim D, Cho D, Cho S (2003) Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere 52(1):277–281

    Article  CAS  PubMed  Google Scholar 

  • Kong H, Song J, Jang J (2010) Photocatalytic antibacterial capabilities of TiO2−biocidal polymer nanocomposites synthesized by a surface-initiated photopolymerization. Environ Sci Technol 44(14):5672–5676

    Article  CAS  PubMed  Google Scholar 

  • Kostarelos K, Bianco A, Prato M (2008) Hype around nanotubes creates unrealistic hopes. Nature 453(7193):280

    Article  CAS  PubMed  Google Scholar 

  • Kubacka A, Cerrada ML, Serrano C, Fernández-García M, Ferrer M, Fernández-García M (2009) Plasmonic nanoparticle/polymer nanocomposites with enhanced photocatalytic antimicrobial properties. J Phys Chem C 113:9182–9190

    Article  CAS  Google Scholar 

  • Lee S (2009) Multifunctionality of layered fabric systems based on electrospun polyurethane/zinc oxide nanocomposite fibers. J Appl Polym Sci 114:3652–3658

    Article  CAS  Google Scholar 

  • Li X, Xing Y, Jiang Y, Ding Y, Li W (2009) Antimicrobial activities of ZnO powder-coated PVC film to inactivate food pathogens. Int J Food Sci Technol 44(11):2161–2168

    Article  CAS  Google Scholar 

  • Lin Y-J, Li D-Q, Wang G, Huang L, Duan X (2005) Preparation and bactericidal property of MgO nanoparticles on γ-Al2O3. J Mater Sci Mater Med 16(1):53–56

    Google Scholar 

  • Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107(4):1193–1201

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Li CM, Bao H, Qiao Y, Toh Y, Yang X (2008) Mechanism of antimicrobial activity of CdTe quantum dots. Langmuir 24(10):5445–5452

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Li CM, Baoi H, Qiao Y, Bao Q (2009) Photophysical mechanism for quantum dots-induced bacterial growth inhibition. J Nanosci Nanotechnol 9(5):3252–3255

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Chen Y, Lin H, Wang C, Yang Z (2010) Preperation of chitosan nanoparticles and their application to Antheraea pernyi Silk. J Appl Polym Sci 117:3362–3369

    CAS  Google Scholar 

  • Mary G, Bajpai SK, Chand N (2009) Copper (II) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties. J Appl Polym Sci 113:757–766

    Article  CAS  Google Scholar 

  • Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB (2009) The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 34(2):103–110

    Article  CAS  PubMed  Google Scholar 

  • Morsy MK, Khalaf HH, Sharoba AM, El-Tanahi HH, Cutter CN (2014) Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products. J Food Sci 79:M675–M682

    Article  CAS  PubMed  Google Scholar 

  • Motlagh NV, Mosavian MTH, Mortazavi SA (2012) Effect of polyethylene packaging modified with silver particles on the microbial, sensory and appearance of dried barberry. Packag Technol Sci 26:39–49

    Article  CAS  Google Scholar 

  • Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4:39–47

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  PubMed  Google Scholar 

  • Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palza H, Gutiérrez S, Delgado K, Salazar O, Fuenzalida V, Avila JI, Figueroa G, Quijada R (2010) Toward tailor-made biocide materials based on poly(propylene)/copper nanoparticles. Macromol Rapid Commun 31(6):563–567

    Article  CAS  PubMed  Google Scholar 

  • Perelshtein I, Applerot G, Perkas N, Wehrschuetz-Sigl E, Hasmann A, Guebitz G, Gedanken A (2009) CuO–cotton nanocomposite: formation, morphology, and antibacterial activity. Surf Coat Technol 204(1–2):54–57

    Article  CAS  Google Scholar 

  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3(7):423–428

    Article  CAS  PubMed  Google Scholar 

  • Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part VI: Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90(2):296–303

    Article  CAS  PubMed  Google Scholar 

  • Powers KW, Moudgil BM, Roberts SM (2007) Characterization of the size, shape and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1(1):42–51

    Article  CAS  Google Scholar 

  • Priester JH, Stoimenov PK, Mielke RE, Webb SM, Ehrhardt C, Zhang JP, Stucky GD, Holden PA (2009) Effects of soluble cadmium salts versus CdSe quantum dots on the growth of planktonic Pseudomonas aeruginosa. Environ Sci Technol 43(7):2589–2594

    Article  CAS  PubMed  Google Scholar 

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339(16):2693–2700

    Article  CAS  PubMed  Google Scholar 

  • Ren G, Hu DH, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterization of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590

    Article  CAS  PubMed  Google Scholar 

  • Rispoli F, Angelov A, Badia D, Kumar A, Seal S, Shah V (2010) Understanding the toxicity of aggregated zero valent copper nanoparticles against Escherichia coli. J Hazard Mater 180:212

    Article  CAS  PubMed  Google Scholar 

  • Roach S (2006) Nanotechnology passes first toxicity hurdle. http://www.foodproductiondaily-usa.com/news/ng.asp?id=69557

  • Robertson JMC, Robertson PKJ, Lawton LA (2005) A comparison of the effectiveness of TiO2 photocatalysis and UVA photolysis for the destruction of three pathogenic micro-organisms. J Photochem Photobiol, A 175(1):51–56

    Article  CAS  Google Scholar 

  • SCENIHR (2007a) Scientific Committee on Emerging and Newly Identified Health Risk SCENIHR. Opinion on: the appropriateness of the risk assessment methodology in accordance with the technical guidance documents for new and existing substances for assessing the risks of nanomaterials European Commission Health and Consumer Protection Directorate-General. Directorate C—Public Health and Risk Assessment C7—Risk Assessment

    Google Scholar 

  • SCENIHR (2007b) Scientific Committee on Emerging and Newly Identified Health Risk SCENIHR. Opinion on: the scientific aspects of the existing and proposed definitions relating to products of nanoscience and nanotechnologies European Commission Health and Consumer Protection Directorate-General. Directorate C—Public Health and Risk Assessment C7—Risk Assessment

    Google Scholar 

  • Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343

    Article  CAS  PubMed  Google Scholar 

  • Sharma C, Dhiman R, Rokana N, Panwar H (2017) Nanotechnology: an untapped resource for food packaging. Nanotechnol Food Packag 8(1735):1–22

    Google Scholar 

  • Sevinç BA, Hanley L (2010) Antibacterial activity of dental composites containing zinc oxide nanoparticles. J Biomed Mater Res, Part B 94(1):22–31

    Google Scholar 

  • Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36:1766–1782

    Article  CAS  Google Scholar 

  • Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK, Rather IA (2017) Application of nanotechnology in food science: perception and overview. Front Microbiol 8:1501

    Article  PubMed  PubMed Central  Google Scholar 

  • Shintani H, Kurosu S, Miki A, Hayashi F, Kato S (2006) Sterilization efficiency of the photocatalyst against environmental microorganisms in a health care facility. Biocontrol Sci 11(1):17–26

    Article  PubMed  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17):6679–6686

    Article  CAS  Google Scholar 

  • Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, Kitajima S, Kanno J (2008) Induction of mesothelioma in p53± mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33(1):105–116

    Article  CAS  PubMed  Google Scholar 

  • Tam KH, DjuriÅ¡ic AB, Chan CMN, Xi YY, Tse CW, Leung YH, Chan WK, Leung FCC, Au DWT (2008) Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films 516(18):6167–6174

    Article  CAS  Google Scholar 

  • The Royal Society and the Royal Academy of Engineering (2004) The Royal Society and the Royal Academy of Engineering. Nanoscience and nanotechnologies: opportunities and uncertainties. London, UK

    Google Scholar 

  • Thomas T, Thomas K, Sadrieh N, Savage N, Adair P, Bronaugh R (2006) Research strategies for safety evaluation of nanomaterials, Part VII: Evaluating consumer exposure to nanoscale materials. Toxicol Sci 91(1):14–19

    Article  CAS  PubMed  Google Scholar 

  • US Food and Drug Administration (2009) Food additives permitted for direct addition to food for human nutrition. Fed. Regist. 74:11476

    Google Scholar 

  • Warheit DB (2008) How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101(2):183–185

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77(7):2325–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing K, Chen XG, Kong M, Liu CS, Cha DS, Park HJ (2009) Effect of oleoyl-chitosan nanoparticles as a novel antibacterial dispersion system on viability, membrane permeability, and cell morphology of Escherichia coli and Staphylococcus aureus. Carbohydr Polym 76(1):17–22

    Article  CAS  Google Scholar 

  • Yang FM, Li HM, Li F, Xin ZH, Zhao LY, Zheng YH, Hu QH (2010) Effect of nano-packing on preservation quality of fresh strawberry (Fragaria ananassa Duch. Cv Fengxiang) during storage at 4 °C. J Food Chem 75:C236–C240

    Article  CAS  Google Scholar 

  • Yoon K-Y, Byeon JH, Park J-H, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373(2–3):572–575

    Article  CAS  PubMed  Google Scholar 

  • Yuvaraj D, Kaushik R, Rao KN (2010) Optical, field-emission, and antimicrobial properties of ZnO nanostructured films deposited at room temperature by activated reactive evaporation. ACS Appl Mater Int 2(4):1019–1024

    Article  CAS  Google Scholar 

  • Zeng H, Gao C, Wang Y, Watts PCP, Kong H, Cui X (2006) In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: mechanical properties and crystallization behavior. Polymer 47:113–122

    Article  CAS  Google Scholar 

  • Zhang Q, Kusaka Y, Zhu X, Sato K, Mo Y, Kluz T et al (2003) Comparative toxicity of standard nickel and ultrafine nickel in lung after intratracheal instillation. J Occup Health 45:23–30

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semih Otles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Otles, S., Sahyar, B.Y. (2018). Chemical Structure and Toxicity of Nanomaterials Used in Food and Food Products. In: Rai, M., Biswas, J. (eds) Nanomaterials: Ecotoxicity, Safety, and Public Perception. Springer, Cham. https://doi.org/10.1007/978-3-030-05144-0_3

Download citation

Publish with us

Policies and ethics