Computational Preliminaries

  • N. N. R. Ranga SuriEmail author
  • Narasimha Murty M
  • G. Athithan
Part of the Intelligent Systems Reference Library book series (ISRL, volume 155)


This chapter presents the mathematical notation followed to represent the data and the computational measures defined on the data. Basics of matrix algebra and information theory are furnished as they form the building blocks of the computational model followed here. The standard procedure for preparing data sets of various types to perform outlier detection is also covered. In essence, the objective is to present the computational preliminaries necessary for developing various algorithmic methods for outlier detection in multi-dimensional record data as well as anomaly detection in network/graph data.


  1. 1.
    Aggarwal, C.C., Yu, P.S.: Outlier detection for high dimensional data. In: ACM SIGMOD International Conference on Management of Data, pp. 37–46. Santa Barbara, USA (2001)CrossRefGoogle Scholar
  2. 2.
    Bock, H.H.: The classical data situation. In: Analysis of Symbolic Data, pp. 139–152. Springer (2002)Google Scholar
  3. 3.
    Boriah, S., Chandola, V., Kumar, V.: Similarity measures for categorical data: a comparative evaluation. In: SIAM International Conference on Data Mining, Atlanta, Georgia, USA, pp. 243–254 (2008)Google Scholar
  4. 4.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3) (2009)CrossRefGoogle Scholar
  5. 5.
    Chandola, V., Boriah, S., Kumar, V.: A framework for exploring categorical data. In: SDM, pp. 187–198. SIAM (2009)CrossRefGoogle Scholar
  6. 6.
    Chaudhary, A., Szalay, A.S., Szalay, E.S., Moore, A.W.: Very fast outlier detection in large multidimensional data sets. In: ACM SIGMOD Workshop in Research Issues in Data Mining and Knowledge Discovery, pp. 45–52 (2002)Google Scholar
  7. 7.
    Cheng, V., Li, C.H., Kwok, J., Li, C.K.: Dissimilarity learning for nominal data. Patten Recognit. 37(7), 1471–1477 (2004)CrossRefGoogle Scholar
  8. 8.
    Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: 23rd International Conference on Machine Learning (ICML), pp. 30–38 (2006)Google Scholar
  9. 9.
    Emmott, A.F., Das, S., Deitterich, T., Fern, A., Wong, W.K.: Systematic construction of anomaly detection benchmarks from real data. In: KDD Workshop on Outlier Detection and Description. ACM, Chicago, IL, USA (2013)Google Scholar
  10. 10.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27, 861–874 (2006)CrossRefGoogle Scholar
  11. 11.
    Gower, J.C., Legendre, P.: Metric and euclidean properties of dissimilarity coefficients. J. Classif. 3(1), 5–48 (1986)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Harkins, S., He, H., Williams, G.J., Baxter, R.A.: Outlier detection using replicator neural networks. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) 4th International Conference on Data Warehousing and Knowledge Discovery (DaWak). LNCS, vol. 2454, pp. 170–180. Springer, Aixen-Provence, France (2002)Google Scholar
  13. 13.
    Hido, S., Tsuboi, Y., Kashima, H., Sugiyama, M., Kanamori, T.: Statistical outlier detection using direct density ratio estimation. Knowl. Inf. Syst. 26(2), 309–336 (2011)CrossRefGoogle Scholar
  14. 14.
    Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal Mach. Intell. 22, 4–37 (2000)CrossRefGoogle Scholar
  15. 15.
    Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., Srivastava, J.: A comparative study of anomaly detection schemes in network intrusion detection. In: SIAM International Conference on Data Mining (2003)Google Scholar
  16. 16.
    Leskovec, J., Krevl, A.: SNAP datasets: stanford large network dataset collection (2014).
  17. 17.
    Ng, M.K., Li, M.J., Huang, J.Z., He, Z.: On the impact of dissimilarity measure in k-modes clustering algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 503–507 (2007)CrossRefGoogle Scholar
  18. 18.
    Sithirasenan, E., Muthukkumarasamy, V.: Substantiating security threats using group outlier detection techniques. In: IEEE GLOBECOM, pp. 2179–2184 (2008)Google Scholar
  19. 19.
    Stanfill, C., Waltz, D.: Towards memory-based reasoning. Commun. ACM 29(12), 1213–1228 (1986)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • N. N. R. Ranga Suri
    • 1
    Email author
  • Narasimha Murty M
    • 2
  • G. Athithan
    • 3
  1. 1.Centre for Artificial Intelligence and Robotics (CAIR)BangaloreIndia
  2. 2.Department of Computer Science and AutomationIndian Institute of Science (IISc)BangaloreIndia
  3. 3.Defence Research and Development Organization (DRDO)New DelhiIndia

Personalised recommendations