Skip to main content

Randomized Controlled Trial Comparing Surgical Interventions

  • Chapter
  • First Online:
Evidence-Based Surgery
  • 643 Accesses

Abstract

Randomized controlled trials (RCT) are considered as the optimal study design to eliminate bias and are used frequently by clinicians to guide therapeutic decision-making ; however, surgical RCTs are faced with unique challenges. The issues related to blinding , allocation concealment, and surgical expertise threatens the validity of a surgical RCT. The purpose of this chapter is to provide clinicians with strategies to use when evaluating an RCT comparing surgical interventions . We begin with a clinical scenario, followed by a literature search , and then guide clinicians on how to critically assess an RCT. We focus on the study methods, the validity of the results, and how the study may affect clinical practice. Upon completion of this chapter, the readers will have a better understanding of how to critically appraise an RCT comparing surgical interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Insititue of Health (NIH). What we do: budget [Internet]. 2018 Apr 11. [cited 2018 Aug 9]. Available from: https://www.nih.gov/about-nih/what-we-do/budget#note.

  2. Graham R, Mancer M, Wolman Miller D, Greenfield S, Steinberg E, editors. Clinical practice guidelines we can trust. Washington, DC: The National Academies Press; 2011. p. 290.

    Google Scholar 

  3. Guyatt G, Cairns J, Churchill D, Cook D, Haynes B, Hirsh J, et al. Evidence-based medicine. A new approach to teaching the practice of medicine. JAMA. 1992;268(17):2420–5.

    Google Scholar 

  4. Richardson WS, Wilson MC, Nishikawa J, Hayward RS. The well-built clinical question: a key to evidence-based decisions. ACP J Club. 1995;123(3):A12–3.

    Google Scholar 

  5. Motschall E, Falck-Ytter Y. Searching the MEDLINE literature database through PubMed: a short guide. Onkologie. 2005;28(10):517–22.

    CAS  PubMed  Google Scholar 

  6. Lu Q, Tang G, Zhao X, Guo S, Cai B, Li Q. Hemiarthroplasty versus internal fixation in super-aged patients with undisplaced femoral neck fractures: a 5-year follow-up of randomized controlled trial. Arch Orthop Trauma Surg. 2017;137(1):27–35.

    Article  Google Scholar 

  7. Bhandari M, Jin L, See K, Burge R, Gilchrist N, Witvrouw R, Krohn KD, Warner MR, Ahmad QI, Mitlak B. Does teriparatide improve femoral neck fracture healing: results from a randomized placebo-controlled trial. Clin Orthop Relat Res. 2016;474(5):1234–44.

    Article  Google Scholar 

  8. Sprague S, Slobogean GP, Bogoch E, Petrisor B, Garibaldi A, O’Hara N, Bhandari M, FAITH Investigators. Vitamin D use and health outcomes after surgery for hip fracture. Orthopedics. 2017;40(5):e868–75.

    Google Scholar 

  9. Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) Investigators. Fracture fixation in the operative management of hip fractures (FAITH): an international, multicentre, randomised controlled trial. Lancet. 2017;389(10078):1519–27.

    Google Scholar 

  10. Watts CD, Houdek MT, Sems SA, Cross WW, Pagnano MW. Tranexamic acid safely reduced blood loss in hemi- and total hip arthroplasty for acute femoral neck fracture: a randomized clinical trial. J Orthop Trauma. 2017;31(7):345–51.

    Article  Google Scholar 

  11. Guyatt G, Rennie D, Meade MO, Cook DJ. User’s guides to the medical literature: essentials of evidence-based clinical practice. 2nd ed. Hamilton, ON: McGraw-Hill Professional; 2008. p. 380.

    Google Scholar 

  12. Hopper AN, Jamison MH, Lewis WG. Learning curves in surgical practice. Postgrad Med J. 2007;83(986):777–9.

    Article  CAS  Google Scholar 

  13. Maruthappu M, Duclos A, Lipsitz SR, Orgill D, Carty MJ. Surgical learning curves and operative efficiency: a cross-specialty observational study. BMJ Open. 2015;5(3):e006679.

    Article  Google Scholar 

  14. Devereaux PJ, Bhandari M, Clarke M, Montori VM, Cook DJ, Yusuf S, et al. Need for expertise based randomised controlled trials. BMJ. 2005;330(7482):88.

    Article  CAS  Google Scholar 

  15. Cook JA. The challenges faced in the design, conduct and analysis of surgical randomised controlled trials. Trials. 2009;10:9.

    Article  Google Scholar 

  16. Cook JA, Elders A, Boachie C, Bassinga T, Fraser C, Altman DG, et al. A systematic review of the use of an expertise-based randomised controlled trial design. Trials. 2015;16:241.

    Article  Google Scholar 

  17. Kim J, Shin W. How to do random allocation (randomization). Clin Orthop Surg. 2014;6(1):103–9.

    Article  Google Scholar 

  18. Schulz KF. Subverting randomization in controlled trials. JAMA. 1995;274(18):1456–8.

    Article  CAS  Google Scholar 

  19. Boutron I, Estellat C, Guittet L, Dechartres A, Sackett DL, Hróbjartsson A, et al. Methods of blinding in reports of randomized controlled trials assessing pharmacologic treatments: a systematic review. PLoS Med. 2006;3(10):e425.

    Article  Google Scholar 

  20. Kaptchuk TJ. Powerful placebo: the dark side of the randomised controlled trial. Lancet. 1998;351(9117):1722–5.

    Article  CAS  Google Scholar 

  21. Zhang W, Robertson J, Jones AC, Dieppe PA, Doherty M. The placebo effect and its determinants in osteoarthritis: meta-analysis of randomised controlled trials. Ann Rheum Dis. 2008;67(12):1716–23.

    Article  CAS  Google Scholar 

  22. van der Linden W. Pitfalls in randomized surgical trials. Surgery. 1980;87(3):258–62.

    PubMed  Google Scholar 

  23. Prescott RJ, Counsell CE, Gillespie WJ, Grant AM, Russell IT, Kiauka S, et al. Factors that limit the quality, number and progress of randomised controlled trials. Health Technol Assess. 1999;3(20):1–143.

    Article  CAS  Google Scholar 

  24. Karanicolas PJ, Farrokhyar F, Bhandari M. Practical tips for surgical research: blinding: who, what, when, why, how? Can J Surg. 2010;53(5):345–8.

    PubMed  PubMed Central  Google Scholar 

  25. Miller LE, Stewart ME. The blind leading the blind: use and misuse of blinding in randomized controlled trials. Contemp Clin Trials. 2011;32(2):240–3.

    Article  Google Scholar 

  26. Randelli P, Arrigoni P, Lubowitz JH, Cabitza P, Denti M. Randomization procedures in orthopaedic trials. Arthroscopy. 2008;24(7):834–8.

    Article  Google Scholar 

  27. Kirkley A, Werstine R, Ratjek A, Griffin S. Prospective randomized clinical trial comparing the effectiveness of immediate arthroscopic stabilization versus immobilization and rehabilitation in first traumatic anterior dislocations of the shoulder: long-term evaluation. Arthroscopy. 2005;21(1):55–63.

    Article  Google Scholar 

  28. Farrokhyar F, Bajammal S, Kahnamoui K, Bhandari M. Practical tips for surgical research. Ensuring balanced groups in surgical trials. Can J Surg. 2010;53(6):418–23.

    Google Scholar 

  29. Herman A, Botser IB, Tenenbaum S, Chechick A. Intention-to-treat analysis and accounting for missing data in orthopaedic randomized clinical trials. J Bone Joint Surg Am. 2009;91(9):2137–43.

    Article  Google Scholar 

  30. Montori VM, Guyatt GH. Intention-to-treat principle. CMAJ. 2001;165(10):1339–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Blencowe NS, Cook JA, Pinkney T, Rogers C, Reeves BC, Blazeby JM. Delivering successful randomized controlled trials in surgery: methods to optimize collaboration and study design. Clin Trials. 2017;14(2):211–8.

    Article  Google Scholar 

  32. Zhong B. How to calculate sample size in randomized controlled trial? J Thorac Dis. 2009;1(1):51–4.

    PubMed  PubMed Central  Google Scholar 

  33. Dumville JC, Torgerson DJ, Hewitt CE. Reporting attrition in randomised controlled trials. BMJ. 2006;332(7547):969–71.

    Article  Google Scholar 

  34. Fergusson D, Aaron SD, Guyatt G, Hébert P. Post-randomisation exclusions: the intention to treat principle and excluding patients from analysis. BMJ. 2002;325(7365):652–4.

    Article  Google Scholar 

  35. Maggard MA, O’Connell JB, Liu JH, Etzioni DA, Ko CY. Sample size calculations in surgery: are they done correctly? Surgery. 2003;134(2):275–9.

    Article  Google Scholar 

  36. Yelland LN, Salter AB, Ryan P. Relative risk estimation in randomized controlled trials: a comparison of methods for independent observations. Int J Biostat. 2011;7(1):1–31.

    Google Scholar 

  37. Sistrom CL, Garvan CW. Proportions, odds, and risk. Radiology. 2004;230(1):12–9.

    Article  Google Scholar 

  38. Irwig L, Irwig J, Trevena L, Sweet M. Smart health choices: making sense of health advice. London: Hammersmith Press; 2008. p. 1–242.

    Google Scholar 

  39. Haas M, Schneider M, Vavrek D. Illustrating risk difference and number needed to treat from a randomized controlled trial of spinal manipulation for cervicogenic headache. Chiropr Osteopat. 2010;18:9.

    Article  Google Scholar 

  40. Bender R. Calculating confidence intervals for the number needed to treat. Control Clin Trials. 2001;22(2):102–10.

    Article  CAS  Google Scholar 

  41. Flechner L, Tseng TY. Understanding results: P-values, confidence intervals, and number need to treat. Indian J Urol. 2011;27(4):532–5.

    Article  Google Scholar 

  42. Sedgwick P. Randomised controlled trials: inferring significance of treatment effects based on confidence intervals. BMJ. 2014;349:g5196.

    Article  Google Scholar 

  43. Trinquart L, Jacot J, Conner SC, Porcher R. Comparison of treatment effects measured by the hazard ratio and by the ratio of restricted mean survival times in oncology randomized controlled trials. J Clin Oncol. 2016;34(15):1813–9.

    Article  Google Scholar 

  44. Bhandari M, Jon Smith, Larry E. Miller, Jon E. Block. Clinical and economic burden of revision knee arthroplasty. Clin Med Insights Arthritis Musculoskelet Disord. 2012;(5):89–94.

    Google Scholar 

  45. Hammond JW, Queale WS, Kim TK, McFarland EG. Surgeon experience and clinical and economic outcomes for shoulder arthroplasty. J Bone Joint Surg Am. 2003;85–A(12):2318–24.

    Google Scholar 

  46. Jain N, Pietrobon R, Hocker S, Guller U, Shankar A, Higgins LD. The relationship between surgeon and hospital volume and outcomes for shoulder arthroplasty. J Bone Joint Surg Am. 2004;86–A(3):496–505.

    Google Scholar 

  47. Hervey SL, Purves HR, Guller U, Toth AP, Vail TP, Pietrobon R. Provider volume of total knee arthroplasties and patient outcomes in the HCUP-nationwide inpatient sample. J Bone Joint Surg Am. 2003;85–A(9):1775–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit Bhandari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Solow, M., Mundi, R., Khanna, V., Bhandari, M. (2019). Randomized Controlled Trial Comparing Surgical Interventions. In: Thoma, A., Sprague, S., Voineskos, S., Goldsmith, C. (eds) Evidence-Based Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-05120-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05120-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05119-8

  • Online ISBN: 978-3-030-05120-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics