Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 951))

  • 1146 Accesses

Abstract

In this chapter we study the simplest large class of (0,2) QFTs: the (0,2) Landau-Ginzburg theories. While they are interesting in their own right, the main goal is to introduce useful notions relevant to general (0,2) theories in the context of these simple examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that in our Euclidean conventions reality is defined with respect to the action of the charge conjugation operator \({\mathcal {C}}\) defined in Sect. 1.8.

  2. 2.

    We use the short-hand introduced in the first chapter: \({\overline {\boldsymbol {Q}}} \cdot {\mathcal {O}} \) stands for \({[{\overline {\boldsymbol {Q}}},{\mathcal {O}}]}\) or \({\{{\overline {\boldsymbol {Q}}},{\mathcal {O}}\}}\), depending on whether \({\mathcal {O}}\) is bosonic or fermionic.

  3. 3.

    Further discussion can be found in [129].

  4. 4.

    In what follows we will omit the distinction between \({\overline {\boldsymbol {Q}}}\)-closed operator \({\mathcal {O}}\) and its cohomology class \([{\mathcal {O}}] \in H_{{\overline {\boldsymbol {Q}}}}\), and we will drop \({\overline {\boldsymbol {Q}}}\)-exact terms in the OPEs.

  5. 5.

    We will explore these structures in greater detail in the next chapter; here we will just need some of the most basic algebraic concepts and definitions. The exercises provide some practice with these tools.

  6. 6.

    The specter of geometry appears before us. It may be useful at this point to take a look through the geometry appendix especially Sect. B.3.2. At this point we need little beyond the tensor structure, so the reader should feel free to simply skim the geometry review to get comfortable with some of the conventions.

  7. 7.

    We suppress the l label, since it does not play any role in the cohomology computation.

  8. 8.

    The latter reference, devoted to residue currents, contains many algebraic notions that should be useful to a (0,2) LG explorer.

  9. 9.

    Since the twist and BRST operator are identical to that of the full half-twisted theory, a better but longer term might be the “B/2 heterotic ring projection of the half-twisted model.”

  10. 10.

    The supercharge Q transforms as a 1-form under the twisted Lorentz symmetry, and the corresponding invariance, if it is to be maintained, must be promoted to a local one on a curved worldsheet.

  11. 11.

    If this is unclear, the reader may want to review the appendix on geometry and especially Exercise B.23.

  12. 12.

    The inevitability is easy to understand—a regularization introduces a lengthscale, and that choice is not compatible with the classical scale invariance.

  13. 13.

    The reader may want to consult the appendix on geometry to recall some notions and review our conventions for Dolbeault and De Rham cohomologies.

  14. 14.

    The author has often used this formula together with Maple’s “RootOf” command to painlessly obtain explicit expressions for correlation functions.

  15. 15.

    We will see applications of similar ideas to (0,2) non-linear sigma models and gauged linear sigma models in the next chapters. Closely related ideas also arise in four-dimensional gauge theories [58].

References

  1. Adams, A., Basu, A., Sethi, S.: (0,2) duality. Adv. Theor. Math. Phys. 7, 865–950 (2004). http://arxiv.org/abs/hep-th/0309226

    Article  MathSciNet  Google Scholar 

  2. Adams, A., Distler, J., Ernebjerg, M.: Topological heterotic rings. Adv. Theor. Math. Phys. 10, 657–682 (2006). http://arxiv.org/abs/hep-th/0506263

    Article  MathSciNet  Google Scholar 

  3. Beasley, C., Witten, E.: New instanton effects in supersymmetric QCD. J. High Energy Phys. 0501, 056 (2005). http://dx.doi.org/10.1088/1126-6708/2005/01/056; http://arxiv.org/abs/hep-th/0409149

    Article  ADS  MathSciNet  Google Scholar 

  4. Bertolini, M., Romo, M.: Aspects of (2,2) and (0,2) hybrid models. http://arxiv.org/abs/1801.04100

  5. Bertolini, M., Melnikov, I.V., Plesser, M.R.: Accidents in (0,2) Landau-Ginzburg theories. J. High Energy Phys. 12, 157 (2014). http://dx.doi.org/10.1007/JHEP12(2014)157; http://arxiv.org/abs/1405.4266

  6. Borisov, L.A., Kaufmann, R.M.: On CY-LG correspondence for (0,2) toric models. http://arxiv.org/abs/1102.5444

  7. Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  8. Collins, T.C., Xie, D., Yau, S.-T.: K stability and stability of chiral ring. http://arxiv.org/abs/1606.09260

  9. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics. Springer, New York (1998)

    Book  Google Scholar 

  10. Dedushenko, M.: Chiral algebras in Landau-Ginzburg models. http://arxiv.org/abs/1511.04372

  11. Distler, J., Kachru, S.: (0,2) Landau-Ginzburg theory. Nucl. Phys. B413, 213–243 (1994). http://arxiv.org/abs/hep-th/9309110

    Article  ADS  MathSciNet  Google Scholar 

  12. Eisenbud, D.: Commutative Algebra. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)

    Chapter  Google Scholar 

  13. Fre, P., Girardello, L., Lerda, A., Soriani, P.: Topological first order systems with Landau-Ginzburg interactions. Nucl. Phys. B387, 333–372 (1992). http://arxiv.org/abs/hep-th/9204041

    Article  ADS  MathSciNet  Google Scholar 

  14. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)

    MATH  Google Scholar 

  15. Guffin, J., Sharpe, E.: A-twisted heterotic Landau-Ginzburg models. http://arxiv.org/abs/0801.3955

  16. Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., Zaslow, E.: Mirror Symmetry. Clay Mathematics Monographs, vol. 1. American Mathematical Society, Providence (2003). With a preface by Vafa

    Google Scholar 

  17. Kachru, S., Witten, E.: Computing the complete massless spectrum of a Landau- Ginzburg orbifold. Nucl. Phys. B407, 637–666 (1993). http://arxiv.org/abs/hep-th/9307038

    Article  ADS  MathSciNet  Google Scholar 

  18. Kawai, T., Mohri, K.: Geometry of (0,2) Landau-Ginzburg orbifolds. Nucl. Phys. B425, 191–216 (1994). http://arxiv.org/abs/hep-th/9402148

    ADS  MathSciNet  MATH  Google Scholar 

  19. Kreuzer, M., Skarke, H.: On the classification of quasihomogeneous functions. Commun. Math. Phys. 150, 137 (1992). http://dx.doi.org/10.1007/BF02096569; http://arxiv.org/abs/hep-th/9202039

    Article  ADS  MathSciNet  Google Scholar 

  20. Lerche, W., Vafa, C., Warner, N.P.: Chiral rings in N=2 superconformal theories. Nucl. Phys. B324, 427 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  21. Martinec, E.J.: Algebraic geometry and effective lagrangians. Phys. Lett. B217, 431 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  22. Melnikov, I.V.: (0,2) Landau-Ginzburg models and residues. J. High Energy Phys. 09, 118 (2009). http://arxiv.org/abs/0902.3908

    Article  ADS  MathSciNet  Google Scholar 

  23. Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, 3rd edn. Springer, Berlin (1994)

    Google Scholar 

  24. Nekrasov, N.A.: Lectures on curved beta-gamma systems, pure spinors, and anomalies. http://arxiv.org/abs/hep-th/0511008

  25. Pestun, V., et al.: Localization techniques in quantum field theories. J. Phys. A50(44), 440301 (2017). http://dx.doi.org/10.1088/1751-8121/aa63c1; http://arxiv.org/abs/1608.02952

    Article  MathSciNet  Google Scholar 

  26. Seiberg, N.: Electric - magnetic duality in supersymmetric nonAbelian gauge theories. Nucl. Phys. B435, 129–146 (1995). http://arxiv.org/abs/hep-th/9411149

    Article  ADS  Google Scholar 

  27. Silverstein, E., Witten, E.: Global U(1) R symmetry and conformal invariance of (0,2) models. Phys. Lett. B328, 307–311 (1994). http://arxiv.org/abs/hep-th/9403054

    Article  ADS  MathSciNet  Google Scholar 

  28. Silverstein, E., Witten, E.: Criteria for conformal invariance of (0,2) models. Nucl. Phys. B444, 161–190 (1995). http://arxiv.org/abs/hep-th/9503212

    Article  ADS  MathSciNet  Google Scholar 

  29. Sturmfels, B.: Solving systems of polynomial equations. In: Regional Conference Series in Mathematics, vol. 97. American Mathematical Society, Providence (2002)

    Google Scholar 

  30. Tan, M.-C., Yagi, J.: Chiral algebras of (0,2) sigma models: beyond perturbation theory. Lett. Math. Phys. 84, 257–273 (2008). http://arxiv.org/abs/0801.4782

    Article  ADS  MathSciNet  Google Scholar 

  31. The Stacks Project Authors: Stacks project. http://stacks.math.columbia.edu (2018)

  32. Tsikh, A., Yger, A.: Residue currents. Complex analysis. J. Math. Sci. (N. Y.) 120(6), 1916–1971 (2004)

    Article  MathSciNet  Google Scholar 

  33. Vafa, C.: Topological Landau-Ginzburg models. Mod. Phys. Lett. A6, 337–346 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  34. Vafa, C., Warner, N.P.: Catastrophes and the classification of conformal theories. Phys. Lett. B218, 51 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  35. Witten, E.: Topological quantum field theory. Commun. Math. Phys. 117, 353 (1988). http://dx.doi.org/10.1007/BF01223371

    Article  ADS  MathSciNet  Google Scholar 

  36. Witten, E.: Topological sigma models. Commun. Math. Phys. 118, 411 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  37. Witten, E.: Introduction to cohomological field theories. Int. J. Mod. Phys. A6, 2775–2792 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  38. Witten, E.: On the Landau-Ginzburg description of N=2 minimal models. Int. J. Mod. Phys. A9, 4783–4800 (1994). http://arxiv.org/abs/hep-th/9304026

    Article  ADS  MathSciNet  Google Scholar 

  39. Witten, E.: Mirror manifolds and topological field theory. http://arxiv.org/abs/hep-th/9112056

  40. Witten, E.: Two-dimensional models with (0,2) supersymmetry: perturbative aspects. http://arxiv.org/abs/hep-th/0504078

  41. Yagi, J.: Chiral algebras of (0,2) models. http://arxiv.org/abs/1001.0118

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Melnikov, I.V. (2019). Landau-Ginzburg Theories. In: An Introduction to Two-Dimensional Quantum Field Theory with (0,2) Supersymmetry. Lecture Notes in Physics, vol 951. Springer, Cham. https://doi.org/10.1007/978-3-030-05085-6_3

Download citation

Publish with us

Policies and ethics