On the Performance of Convolutional Neural Networks for Side-Channel Analysis

  • Stjepan Picek
  • Ioannis Petros Samiotis
  • Jaehun Kim
  • Annelie Heuser
  • Shivam BhasinEmail author
  • Axel Legay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11348)


In this work, we ask a question whether Convolutional Neural Networks are more suitable for side-channel attacks than some other machine learning techniques and if yes, in what situations. Our results point that Convolutional Neural Networks indeed outperform machine learning in several scenarios when considering accuracy. Still, often there is no compelling reason to use such a complex technique. In fact, if comparing techniques without extra steps like preprocessing, we see an obvious advantage for Convolutional Neural Networks when the level of noise is small, and the number of measurements and features is high. The other tested settings show that simpler machine learning techniques, for a significantly lower computational cost, perform similarly or sometimes even better. The experiments with guessing entropy indicate that methods like Random Forest or XGBoost could perform better than Convolutional Neural Networks for the datasets we investigated.


Side-channel analysis Machine learning Deep learning Convolutional Neural Networks 


  1. 1.
    Ronen, E., Shamir, A., Weingarten, A., O’Flynn, C.: IoT goes nuclear: creating a ZigBee chain reaction. In: IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, 22–26 May 2017, pp. 195–212. IEEE Computer Society (2017)Google Scholar
  2. 2.
    Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). Scholar
  3. 3.
    Heuser, A., Rioul, O., Guilley, S.: Good is not good enough. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 55–74. Springer, Heidelberg (2014). Scholar
  4. 4.
    Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 20–33. Springer, Cham (2015). Scholar
  5. 5.
    Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005). Scholar
  6. 6.
    Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014). Scholar
  7. 7.
    Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill Inc., New York (1997)zbMATHGoogle Scholar
  8. 8.
    Heuser, A., Zohner, M.: Intelligent machine homicide. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 249–264. Springer, Heidelberg (2012). Scholar
  9. 9.
    Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.: Machine learning in side-channel analysis: a first study. J. Cryptogr. Eng. 1, 293–302 (2011). Scholar
  10. 10.
    Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack: an approach based on machine learning. Int. J. Appl. Cryptol. 3(2), 97–115 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lerman, L., Bontempi, G., Markowitch, O.: A machine learning approach against a masked AES: reaching the limit of side-channel attacks with a learning model. J. Cryptogr. Eng. 5(2), 123–139 (2015)CrossRefGoogle Scholar
  12. 12.
    Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A machine learning approach against a masked AES. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 61–75. Springer, Cham (2014). Scholar
  13. 13.
    Picek, S., Heuser, A., Guilley, S.: Template attack versus Bayes classifier. J. Cryptogr. Eng. 7(4), 343–351 (2017)CrossRefGoogle Scholar
  14. 14.
    Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked implementation of AES. In: 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 106–111, May 2015Google Scholar
  15. 15.
    Heuser, A., Picek, S., Guilley, S., Mentens, N.: Lightweight ciphers and their side-channel resilience. IEEE Trans. Comput. PP(99), 1 (2017)CrossRefGoogle Scholar
  16. 16.
    Heuser, A., Picek, S., Guilley, S., Mentens, N.: Side-channel analysis of lightweight ciphers: does lightweight equal easy? In: Hancke, G.P., Markantonakis, K. (eds.) RFIDSec 2016. LNCS, vol. 10155, pp. 91–104. Springer, Cham (2017). Scholar
  17. 17.
    Picek, S., et al.: Side-channel analysis and machine learning: a practical perspective. In: 2017 International Joint Conference on Neural Networks, IJCNN 2017, Anchorage, AK, USA, 14–19 May 2017, pp. 4095–4102 (2017)Google Scholar
  18. 18.
    Picek, S., Heuser, A., Jovic, A., Legay, A.: Climbing down the hierarchy: hierarchical classification for machine learning side-channel attacks. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT 2017. LNCS, vol. 10239, pp. 61–78. Springer, Cham (2017). Scholar
  19. 19.
    Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). Scholar
  20. 20.
    Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). Scholar
  21. 21.
    Chollet, F., et al.: Keras (2015).
  22. 22.
    Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from
  23. 23.
    Wolpert, D.H.: The lack of a priori distinctions between learning algorithms. Neural Comput. 8(7), 1341–1390 (1996)CrossRefGoogle Scholar
  24. 24.
    Bellman, R.E.: Dynamic Programming. Dover Publications, Incorporated, Mineola (2003)zbMATHGoogle Scholar
  25. 25.
    Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14(1), 55–63 (1968)CrossRefGoogle Scholar
  26. 26.
    Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251–257 (1991)CrossRefGoogle Scholar
  27. 27.
    Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29(2), 131–163 (1997)CrossRefGoogle Scholar
  28. 28.
    Collobert, R., Bengio, S.: Links between perceptrons, MLPs and SVMs. In: Proceedings of the Twenty-First International Conference on Machine Learning, ICML 2004, p. 23. ACM, New York (2004)Google Scholar
  29. 29.
    Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2000)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. CoRR abs/1603.02754 (2016)Google Scholar
  31. 31.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar
  32. 32.
    LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. In: The Handbook of Brain Theory and Neural Networks, vol. 3361, no. 10 (1995)Google Scholar
  33. 33.
    Van Den Oord, A., et al.: WaveNet: a generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016)
  34. 34.
    Demuth, H.B., Beale, M.H., De Jess, O., Hagan, M.T.: Neural Network Design. Martin Hagan (2014)Google Scholar
  35. 35.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014)Google Scholar
  36. 36.
    Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). Scholar
  37. 37.
    TELECOM ParisTech SEN research group: DPA Contest, 4th edn (2013–2014).
  38. 38.
    TELECOM ParisTech SEN research group: DPA Contest, 2nd edn (2009–2010).
  39. 39.
    Coron, J.-S., Kizhvatov, I.: An efficient method for random delay generation in embedded software. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 156–170. Springer, Heidelberg (2009). Scholar
  40. 40.
    James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning. STS, vol. 103. Springer, New York (2013). Scholar
  41. 41.
    Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. arXiv preprint arXiv:1706.02515 (2017)
  42. 42.
    Strobl, C., Boulesteix, A.L., Zeileis, A., Hothorn, T.: Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinform. 8(1), 25 (2007)CrossRefGoogle Scholar
  43. 43.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015)Google Scholar
  44. 44.
    Timon, B.: Non-profiled deep learning-based side-channel attacks. Cryptology ePrint Archive, Report 2018/196 (2018).

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Stjepan Picek
    • 1
  • Ioannis Petros Samiotis
    • 1
  • Jaehun Kim
    • 1
  • Annelie Heuser
    • 2
  • Shivam Bhasin
    • 3
    Email author
  • Axel Legay
    • 4
  1. 1.Delft University of TechnologyDelftThe Netherlands
  2. 2.CNRS, IRISARennesFrance
  3. 3.Physical Analysis and Cryptographic Engineering, Temasek LaboratoriesNanyang Technological UniversitySingaporeSingapore
  4. 4.Inria, IRISARennesFrance

Personalised recommendations