Fall Armyworm (FAW; Lepidoptera: Noctuidae): Moth Oviposition and Crop Protection

  • Camilo Ayra-Pardo
  • Orlando Borras-Hidalgo


In plant-herbivore insect interaction, moths have developed different odour-related behaviours to choose preferred hosts, evade plant defences and guarantee the offspring fitness. Fall armyworm (FAW) is a voracious polyphagous insect pest originally from the Western hemisphere that targets some of the most important crops Worldwide. Due to its aggressiveness as pest and high adaptability to adverse environments, the need for new pest control strategies is constant. The study of FAW behaviours to efficiently manage field populations and improve crop protection is of great interest to entomologists and plant scientists alike. This chapter presents an overview of fall armyworm as crop pest, highlighting some behavioural adaptations of ovipositing female moths that may undermine the effectiveness of existing crop protection practices if are not taken into account. Furthermore, this chapter addresses the recent use of novel ground-breaking gene-editing techniques such as CRISPR/Cas9 to functionally investigate the olfactory system in moths of Spodoptera sp. that will offer opportunities for the development of new pest control strategies.



The authors want to thank editors (Jean-François “Jeff” Picimbon and Springer Nature) for the invitation to contribute with a chapter to this book.


  1. Abraham D, Löfstedt C, Picimbon JF (2005) Molecular characterization and evolution of pheromone binding protein genes in Agrotis moths. Insect Biochem Mol Biol 35:1100–1111CrossRefPubMedGoogle Scholar
  2. Adang M, Crickmore N, Jurat-Fuentes JL (2014) Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. In: Dhadialla TS, Gill S (eds) Insect midgut and insecticidal proteins, Advances in insect physiology, vol 47. Academic, San Diego, pp 39–87CrossRefGoogle Scholar
  3. Ankala A, Luthe DS, Williams WP, Wilkinson JR (2009) Integration of ethylene and jasmonic acid signaling pathways in the expression of maize defense protein Mir1-CP. Mol Plant-Microbe Interact 22:1555–1564CrossRefPubMedGoogle Scholar
  4. Ashley TR, Wiseman BR, Davis BR, Andrews KL (1989) The fall armyworm: a bibliography. Fla Entomol 72:152–202CrossRefGoogle Scholar
  5. Balbyshev NF, Lorenzen JH (1997) Hypersensitivity and egg drop, a novel mechanism of host-plant resistance to Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 90:652–657CrossRefGoogle Scholar
  6. Barzman M, Bàrberi P, Birch ANE, Boonekamp P, Dachbrodt-Saaydeh S, Graf G, Hommel B, Jensen JE, Kiss J, Kudsk P, Lamichhane JR, Messéan A, Moonen AC, Ratnadass A, Ricci P, Sarah JL, Sattin M (2015) Eight principles of integrated pest management. Agron Sustain Dev 35:1199–1215CrossRefGoogle Scholar
  7. Bassett AR, Liu JL (2014) CRISPR/Cas9 and genome editing in Drosophila. J Genet Genomics 41:7e19CrossRefGoogle Scholar
  8. Basu S, Aryan A, Overcash JM, Samuel GH, Anderson MA, Dahlem TJ, Myles KM, Adelman ZN (2015) Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti. Proc Natl Acad Sci U S A 112:4038–4043CrossRefPubMedPubMedCentralGoogle Scholar
  9. BBC News (2017) Fall armyworm ‘threatens African farmers’ livelihoods’.
  10. Beckers GJM, Spoel SH (2006) Fine-tuning plant defence signalling: salicylate versus jasmonate. Plant Biol 8:1–10CrossRefPubMedGoogle Scholar
  11. Bi HL, Xu J, Tan AJ, Huang YP (2016) CRISPR/Cas9-mediated targeted gene mutagenesis in Spodoptera litura. Insect Sci 23:469–477CrossRefPubMedGoogle Scholar
  12. Brar SK, Verma M, Tyagi R, Valéro J (2006) Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem 41:323–342CrossRefGoogle Scholar
  13. Brévault T, Heuberger S, Zhang M, Ellers-Kirk C, Ni X, Masson L, Li X, Tabashnik BE, Carrière Y (2013) Potential shortfall of pyramided transgenic cotton for insect resistance management. Proc Natl Acad Sci U S A 110:5806–5811CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brooks TD, Bushman BS, Williams WP, Mcmullen MD, Buckley PM (2007) Genetic basis of resistance to FAW (Lepidoptera: Noctuidae) and southwestern corn borer (Lepidoptera: Crambidae) leaf feeding damage in maize. J Econ Entomol 100:1470–1475CrossRefPubMedGoogle Scholar
  15. Bruce T, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274CrossRefPubMedGoogle Scholar
  16. Cardé RT, Baker TC (1984) Sexual communication with pheromones. In: Bell WJ, Cardé RT (eds) Chemical ecology of insects. Chapman & Hall, London, pp 355–383CrossRefGoogle Scholar
  17. Carrière Y, Ellers-Kirk C, Sisterson M, Antilla L, Whitlow M, Dennehy TJ, Tabashnik BE (2003) Long-term regional suppression of pink bollworm by Bacillus thuringiensis cotton. Proc Natl Acad Sci U S A 100:1519–1523CrossRefPubMedPubMedCentralGoogle Scholar
  18. Carvalho RA, Omoto C, Field LM, Williamson MS, Bass C (2013) Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PLoS One 8:e62268CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chang YM, Luthe DS, Davis FM, Williams WP (1999) Influence of whorl region from resistant and susceptible corn genotypes on FAW (Lepidoptera: Noctuidae) growth and development. J Econ Entomol 93:477–483CrossRefGoogle Scholar
  20. Christou P, Capell T, Kohli A, Gatehouse JA, Gatehouse AM (2006) Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci 11:302–308CrossRefPubMedGoogle Scholar
  21. Cipollini D, Enright S, Traw MB, Bergelson J (2004) Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua. Mol Ecol 13:1643–1653CrossRefPubMedGoogle Scholar
  22. Comeault AA, Serrato-Capuchina A, Turissini DA, McLaughlin PJ, David JR, Matute DR (2017) A nonrandom subset of olfactory genes is associated with host preference in the fruit fly Drosophila orena. Evol Lett 1:73–85CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400CrossRefPubMedGoogle Scholar
  24. Cruz I, Figueiredo MLC, Valicente FH, Oliveira AC (1997) Application rate trials with a nuclear polyhedrosis virus to control Spodoptera frugiperda (Smith) on maize. An Soc Entomol Brasil 26:145–152CrossRefGoogle Scholar
  25. DeGennaro M, McBride CS, Seeholzer L, Nakagawa T, Dennis EJ, Goldman C, Jasinskiene N, James AA, Vosshal LB (2013) Orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 498:487–491CrossRefPubMedPubMedCentralGoogle Scholar
  26. de Lange ES, Balmer D, Mauch-Mani B, Turlings TCJ (2014) Insect and pathogen attack and resistance in maize and its wild ancestors, the teosintes. New Phytol 204:329–341CrossRefGoogle Scholar
  27. De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580CrossRefPubMedGoogle Scholar
  28. Doares SH, Narvaes-Vasquez J, Conconi A, Ryan CA (1995) Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol 108:1741–1746CrossRefPubMedPubMedCentralGoogle Scholar
  29. Duvaux L, Geissmann Q, Gharbi K, Zhou JJ, Farrari J, Smadja CM, Butlin R (2015) Dynamics of copy number variation in host races of the pea aphid. Mol Biol Evol 32:63–80CrossRefPubMedGoogle Scholar
  30. Emelianov I, Drès M, Baltensweiler W, Mallet J (2001) Host-induced assortative mating in host races of the larch budmoth. Evolution 55:2002–2010CrossRefPubMedGoogle Scholar
  31. Emelianov I, Simpson F, Narang P, Mallet J (2003) Host choice promotes reproductive isolation between host races of the larch budmoth Zeiraphera diniana. J Evol Biol 16:208–218CrossRefPubMedGoogle Scholar
  32. Eyres I, Duvaux L, Gharbi K, Tucker R, Hopkins D, Simon JC, Ferrari J, Smadja CM, Butlin RK (2016) Targeted re-sequencing confirms the importance of chemosensory genes in aphid host race differentiation. Mol Ecol 26:43–58CrossRefPubMedGoogle Scholar
  33. Farias JR, Andow DA, Horikoshi RJ, Sorgatto RJ, Fresia P, dos Santos AC, Omoto C (2014) Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot 64:150–158CrossRefGoogle Scholar
  34. Fatouros NE, Bukovinszkine’kiss G, Kalkers LA, Gamborena RS, Dicke M, Hilker M (2005) Oviposition-induced plant cues: do they arrest Trichogramma wasps during host location? Entomol Exp Appl 115:207–215CrossRefGoogle Scholar
  35. Gardner WA, Fuxa JR (1980) Pathogens for the suppression of the fall armyworm. Fla Entomol 63:439–447CrossRefGoogle Scholar
  36. Gardner WA, Noblet R, Schwehr RD (1984) The potential of microbial agents in managing populations of the fall armyworm. Fla Entomol 67:325–332CrossRefGoogle Scholar
  37. Gilles AF, Schinko JB, Averof M (2015) Efficient CRISPR-mediated gene targeting and transgene replacement in the beetle Tribolium castaneum. Development 142:2832–2839CrossRefPubMedGoogle Scholar
  38. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227CrossRefPubMedPubMedCentralGoogle Scholar
  39. Golic KG (2013) RNA-guided nucleases: a new era for engineering the genomes of model and nonmodel organisms. Genetics 195:303–308CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gould F (1998) Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu Rev Entomol 43:701–726CrossRefPubMedGoogle Scholar
  41. Gripenberg S, Mayhew PJ, Parnell M, Roslin T (2010) A meta-analysis of preference-performance relationships in phytophagous insects. Ecol Lett 3:383–393CrossRefGoogle Scholar
  42. Groot AT, Marr M, Heckel DG, Schöft G (2010) The roles and interactions of reproductive isolation mechanisms in fall armyworm (Lepidoptera: Noctuidae) host strains. Ecol Entomol 35:105–118CrossRefGoogle Scholar
  43. Gupta V, Willits MG, Glazebrook J (2000) Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: evidence for inhibition of jasmonic acid signaling by SA. Mol Plant-Microbe Interact 13:503–511CrossRefPubMedGoogle Scholar
  44. Halitschke R, Gase K, Hui D, Schmidt DD, Baldwin IT (2003) Molecular interactions between the specialist herbivore Manduca sexta (lepidoptera, sphingidae) and its natural host Nicotiana attenuata. VI. Microarray analysis reveals that most herbivore-specific transcriptional changes are mediated by fatty acid-amino acid conjugates. Plant Physiol 131:1894–1902CrossRefPubMedPubMedCentralGoogle Scholar
  45. Halitschke R, Stenberg JA, Kessler D, Kessler A, Baldwin IT (2008) Shared signals -‘alarm calls’ from plants increase apparency to herbivores and their enemies in nature. Ecol Lett 11:24–34PubMedGoogle Scholar
  46. Hallem EA, Dahanukar A, Carlson JR (2006) Insect odor and taste receptors. Annu Rev Entomol 51:113–135CrossRefPubMedGoogle Scholar
  47. Hansson BS, Stensmyr MC (2011) Evolution of insect olfaction. Neuron 72:698–711CrossRefGoogle Scholar
  48. Harmon JP, White JA, Andow DA (2003) Oviposition behavior of Ostrinia nubilalis (Lepidoptera: Crambidae) in response to potential intra- and interspecific interactions. Environ Entomol 32:334–339CrossRefGoogle Scholar
  49. Hay-Roe MM, Meagher RL, Nagoshi RN (2011) Effects of cyanogenic plants on fitness in two host strains of the fall armyworm (Spodoptera frugiperda). J Chem Ecol 37:1314–1322CrossRefPubMedGoogle Scholar
  50. Hilker M, Meiners T (2002) Chemoecology of insect eggs and egg deposition. Blackwell Publishing, Berlin, p 384Google Scholar
  51. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66CrossRefPubMedGoogle Scholar
  52. Huang F, Andow DA, Buschman LL (2011) Success of the high-dose/refuge resistance management strategy after 15 years of Bt crop use in North America. Entomol Exp Appl 140:1–16CrossRefGoogle Scholar
  53. Huang F, Qureshi JA, Meagher RL, Reisig DD, Head GP, Andow DA, Ni X, Kerns D, Buntin GD, Niu Y, Yang F, Dangal V (2014) Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize. PLoS One 9:e112958CrossRefPubMedPubMedCentralGoogle Scholar
  54. Huang Y, Liu Z, Rong YS (2016) Genome editing: from Drosophila to non-model insects and beyond. J Genet Genomics 43:263–272CrossRefPubMedGoogle Scholar
  55. Ifoulis A, Savopoulou-Soultani M (2004) Biological control of Lobesia botrana (Lepidoptera: Tortricidae) larvae by using different formulations of Bacillus thuringiensis in 11 vine cultivars under field conditions. J Econ Entomol 97:340–343CrossRefPubMedGoogle Scholar
  56. Jaenike J (1978) On optimal oviposition behavior in phytophagous insects. Theor Popul Biol 14:350–356CrossRefPubMedGoogle Scholar
  57. James C (2016) Global status of commercialized biotech/GM crops: 2016, ISAAA brief no. 52. ISAAA, Ithaca Google Scholar
  58. Jiang B, Siregar U, Willeford KO, Luthe DS, Williams WP (1995) Association of a 33-kilodalton cysteine proteinase found in corn callus with the inhibition of FAW larval growth. Plant Physiol 108:1631–1640CrossRefPubMedPubMedCentralGoogle Scholar
  59. Kahl J, Siemens DH, Aerts RJ, Gäbler R, Kühnemann F, Preston CA, Baldwin IT (2000) Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore. Planta 210:336–342CrossRefPubMedPubMedCentralGoogle Scholar
  60. King ABS, Saunders JL (1984) The invertebrate pests of annual food crops in Central America. Overseas Development Administration, London, p 166Google Scholar
  61. Kistler KE, Vosshall LB, Matthews BJ (2015) Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Rep 11:51–60CrossRefPubMedPubMedCentralGoogle Scholar
  62. Koornneef A, Pieterse CMJ (2008) Cross talk in defense signaling. Plant Physiol 146:839–844CrossRefPubMedPubMedCentralGoogle Scholar
  63. Koutroumpa FA, Monsempes C, François MC, de Cian A, Royer C, Concordet JP, Jacquin-Joly E (2016) Heritable genome editing with CRISPR/Cas9 induces anosmia in a crop pest moth. Sci Rep 6:29620CrossRefPubMedPubMedCentralGoogle Scholar
  64. Lamichhane JR, Arseniuk E, Boonekamp P, Czembor J, Decroocq V, Enjalbert J, Finckh MR, Korbin M, Koppel M, Kudsk P, Mesterhazy A, Sosnowska D, Zimnoch-Guzowska E, Messéan A (2017) Advocating a need for suitable breeding approaches to boost Integrated Pest Management: a European perspective. Pest Manag Sci.
  65. Lawrence SD, Novak NG, Blackburn MB (2007) Inhibition of proteinase inhibitor transcripts by Leptinotarsa decemlineata regurgitant in Solanum lycopersicum. J Chem Ecol 33:1041–1048CrossRefPubMedGoogle Scholar
  66. Legeai F, Malpel S, Montagne N, Monsempes C, Cousserans F, Merlin C, François MC, Maïbèche-Coisné M, Gavory F, Poulain J, Jacquin-Joly E (2011) An Expressed Sequence Tag collection from the male antennae of the noctuid moth Spodoptera littoralis: a resource for olfactory and pheromone detection research. BMC Genomics 12:86CrossRefPubMedPubMedCentralGoogle Scholar
  67. Levy HC, Garcia-Maruniak A, Maruniak JE (2002) Strain identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) insects and cell line: PCR-RFLP of cytochrome oxidase C subunit I gene. Fla Entomol 85:186–190CrossRefGoogle Scholar
  68. Lewter JA, Szalanski AL, Nagoshi RN, Meagher RL, Owens CB, Luttrell RG (2006) Genetic variation within and between strains of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Fla Entomol 89:63–68CrossRefGoogle Scholar
  69. Lima ER, McNeil JN (2009) Female sex pheromones in the host races and hybrids of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Chemoecology 19:29–36CrossRefGoogle Scholar
  70. Linz J, Baschwitz A, Strutz A, Dweck HKW, Sachse S, Hansson BS, Stensmyr MC (2013) Host plant-driven sensory specialization in Drosophila erecta. Proc R Soc B 280:20130626CrossRefPubMedGoogle Scholar
  71. Little D, Gouhier-Darimont C, Bruessow F, Reymond P (2007) Oviposition by pierid butterflies triggers defense responses in Arabidopsis. Plant Physiol 143:784–800CrossRefPubMedPubMedCentralGoogle Scholar
  72. Liu Y, Ma S, Wang X, Chang J, Gao J, Shi R, Zhang J, Lu W, Liu Y, Zhao P, Xia Q (2014) Highly efficient multiplex targeted mutagenesis and genomic structure variation in Bombyx mori cells using CRISPR/Cas9. Insect Biochem Mol Biol 49:35–42CrossRefPubMedGoogle Scholar
  73. Lu YJ, Adang MJ, Isenhour DJ, Kochert GD (1992) RFLP analysis of genetic variation in North American populations of the fall armyworm moth Spodoptera frugiperda (Lepidoptera: Noctuidae). Mol Ecol 1:199–208CrossRefGoogle Scholar
  74. Lu YJ, Kochert GD, Isenhour DJ, Adang MJ (1994) Molecular characterization of a strain-specific repeated DNA sequence in the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Insect Mol Biol 3:123–130CrossRefPubMedGoogle Scholar
  75. Luginbill P (1928) The fall armyworm. USDA Tech Bull 34:91Google Scholar
  76. Machado V, Wunder M, Baldissera VD, Oliveira JV, Fiúza LM, Nagoshi RN (2008) Molecular characterization of host strains of Spodoptera frugiperda (Lepidoptera: Noctuidae) in southern Brazil. Ann Entomol Soc Am 101:619–626CrossRefGoogle Scholar
  77. Malausa T, Bethenod MT, Bontemps A, Bourguet D, Cornuet JM, Ponsard S (2005) Assortative mating in sympatric host races of the European corn borer. Science 308:258–260CrossRefPubMedGoogle Scholar
  78. Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y (2007) Odorant binding proteins OBP57d and OBP57e affect taste perception and host plant preference in Drosophila sechellia. PLoS Biol 5:0985–0996CrossRefGoogle Scholar
  79. McBride CS (2007) Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia. Proc Natl Acad Sci U S A 104:4996–5001CrossRefPubMedPubMedCentralGoogle Scholar
  80. McBride CS, Baier F, Omondi AB, Spitzer SA, Lutomiah J, Sang R, Ignell R, Vosshall LB (2014) Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515:222–227CrossRefPubMedPubMedCentralGoogle Scholar
  81. McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457CrossRefPubMedGoogle Scholar
  82. Meagher RL, Nagoshi RN (2004) Population dynamics and occurrence of Spodoptera frugiperda host strains in southern Florida. Ecol Entomol 29:614–620CrossRefGoogle Scholar
  83. Meiners T, Hilker M (2000) Induction of plant synomones by oviposition of a phytophagous insect. J Chem Ecol 26:221–232CrossRefGoogle Scholar
  84. Mitchell ER (1978) Relationship of planting date to damage by earworms in commercial sweet corn in north central Florida. Fla Entomol 61:251–255CrossRefGoogle Scholar
  85. Mohan S, Ma PKW, Pechan T, Bassford ER, Williams WP, Luthe DS (2006) Degradation of the Spodoptera frugiperda peritrophic matrix by an inducible maize cysteine protease. J Insect Physiol 52:21–28CrossRefPubMedGoogle Scholar
  86. Mohan S, Ma PKW, Williams WP, Luthe DS (2008) A naturally occurring plant cysteine protease possesses remarkable toxicity against insect pests and synergizes Bacillus thuringiensis toxin. PLoS One 3:e1786CrossRefPubMedPubMedCentralGoogle Scholar
  87. Musser RO, Cipollini DF, Hum-Musser SM, Williams SA, Brown JK, Felton GW (2005) Evidence that the caterpillar salivary enzyme glucose oxidase provides herbivore offense in solanaceous plants. Arch Insect Biochem Physiol 58:128–137CrossRefPubMedGoogle Scholar
  88. Nagoshi RN (2010) The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann Entomol Soc Am 103:283–292CrossRefGoogle Scholar
  89. Nagoshi RN, Meagher RL (2003) FR tandem-repeat sequence in fall armyworm (Lepidoptera: Noctuidae) host strains. Ann Entomol Soc Am 96:329–335CrossRefGoogle Scholar
  90. Nagoshi RN, Meagher RL (2004a) Behavior and distribution of the two fall armyworm host strains in Florida. Fla Entomol 87:440–449CrossRefGoogle Scholar
  91. Nagoshi RN, Meagher RL (2004b) Seasonal distribution of fall armyworm (Lepidoptera: Noctuidae) host strains in agricultural and turf grass habitats. Environ Entomol 33:881–889CrossRefGoogle Scholar
  92. Nagoshi RN, Meagher RL, Adamczyk JJ Jr, Braman SK, Brandenburg R, Nuessly G (2006a) New restriction fragment length polymorphisms in the cytochrome oxidase I gene facilitate host strain identification of fall armyworm (Lepidoptera: Noctuidae) populations in the southeastern United States. J Econ Entomol 99:671–677CrossRefPubMedGoogle Scholar
  93. Nagoshi RN, Meagher RL, Nuessly G, Hall D (2006b) Effects of fall armyworm (Lepidoptera: Noctuidae) interstrain mating in wild populations. Environ Entomol 35:561–568CrossRefGoogle Scholar
  94. Nagoshi RN, Adamczyk JJ Jr, Meagher RL, Gore J, Jackson R (2007) Using stable isotope analysis to examine fall armyworm (Lepidoptera: Noctuidae) host strains in a cotton habitat. J Econ Entomol 100:1569–1576CrossRefPubMedGoogle Scholar
  95. Ortega A (1987) Insect pests of maize: a guide for field identification. CIMMYT, Mexico, p 112Google Scholar
  96. Painter RH (1955) Insects on corn and teosinte in Guatemala. J Econ Entomol 48:36–42CrossRefGoogle Scholar
  97. Paschold A, Halitschke R, Baldwin IT (2007) Co(i)-ordinating defenses: NaCOI1 mediates herbivore- induced resistance in Nicotiana attenuata and reveals the role of herbivore movement in avoiding defenses. Plant J 51:79–91CrossRefPubMedGoogle Scholar
  98. Pashley DP (1986) Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): a sibling species complex? Ann Entomol Soc Am 79:898–904CrossRefGoogle Scholar
  99. Pashley DP, Martin JA (1987) Reproductive incompatibility between host strains of the fall armyworm (Lepidoptera: Noctuidae). Ann Entomol Soc Am 80:731–733CrossRefGoogle Scholar
  100. Pashley DP, Johnson SJ, Sparks AN (1985) Genetic population structure of migratory moths: the fall armyworm (Lepidoptera: Noctuidae). Ann Entomol Soc Am 78:756–762CrossRefGoogle Scholar
  101. Pashley DP, Quisenberry SS, Jamjanya T (1987) Impact of fall armyworm (Lepidoptera: Noctuidae) host strains on the evaluation of Bermuda grass resistance. J Econ Entomol 80:1127–1130CrossRefGoogle Scholar
  102. Pashley DP, Hammond AM, Hardy TN (1992) Reproductive isolating mechanisms in fall armyworm host strains (Lepidoptera: Noctuidae). Ann Entomol Soc Am 85:400–405CrossRefGoogle Scholar
  103. Pechan T, Cohen A, Williams WP, Luthe DS (2002) Insect feeding mobilizes a unique plant defense proteinase that disrupts the peritrophic matrix of caterpillars. Proc Natl Acad Sci U S A 99:13319–13323CrossRefPubMedPubMedCentralGoogle Scholar
  104. Pechan T, Ma PWK, Luthe DS (2004) Heterologous expression of maize (Zea mays L.) Mir-1 cysteine protease in eukaryotic and prokaryotic expression systems. Protein Expr Purif 34:134–141CrossRefPubMedGoogle Scholar
  105. Peñaflor MF, Bento JM (2011) Role of plant odors to arthropod natural enemies and herbivores. In: Logan EW, Atwood JM (eds) The biology of odors: sources, olfaction and response. Nova Science Publishers, New York, pp 361–379Google Scholar
  106. Peñaflor MF, Erb M, Robert CA, Miranda LA, Werneburg AG, Dossi FCA, Turlings TCJ, Bento JM (2011) Oviposition by a moth suppresses constitutive and herbivore-induced plant volatiles in maize. Planta 234:207–215CrossRefPubMedGoogle Scholar
  107. Picimbon JF (1996) La phéromone du mâle facilite l’acceptation du mâle par la femelle chez la pyrale du maïs, Ostrinia nubilalis (Lep., Pyralidae). CIFCA 96. First “Francophone” International Congress on Animal Behaviour, June 9–13th, Laval University, Quebec, CanadaGoogle Scholar
  108. Picimbon JF (2003) Evolution and biochemistry of OBP and CSP proteins. In: Vogt RG, Blomquist GJ (eds) Insect pheromone biochemistry and molecular biology-the biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, SanDiego/London, pp 385–431Google Scholar
  109. Picimbon JF, Gadenne C (2002) Evolution of noctuid Pheromone Binding Proteins: identification of PBP in the black cutworm moth, Agrotis ipsilon. Insect Biochem Mol Biol 32:839–846CrossRefPubMedGoogle Scholar
  110. Pitre HN, Hogg DB (1983) Development of the fall armyworm on cotton, soybean and corn. J Ga Entomol Soc 18:187–194Google Scholar
  111. Prowell DP, McMichael M, Silvain JF (2004) Multilocus genetic analysis of host use, introgression, and speciation in host strains of fall armyworm (Lepidoptera: Noctuidae). Ann Entomol Soc Am 97:1034–1044CrossRefGoogle Scholar
  112. Ramasamy S, Ometto L, Crava CM, Revadi S, Kaur R, Horner D, Pisani D, Dekker T, Anfora G, Rota-Stabelli O (2016) The evolution of olfactory gene families in Drosophila and the genomic basis of chemical-ecological adaptation in Drosophila suzukii. Genome Biol Evol 8:2297–2311CrossRefPubMedPubMedCentralGoogle Scholar
  113. Raymond B, Sayyed AH, Hails RS, Wright DJ (2007) Exploiting pathogens and their impact on fitness costs to manage the evolution of resistance to Bacillus thuringiensis. J Appl Ecol 44:768–780CrossRefGoogle Scholar
  114. Renwick JAA, Radke CD (1982) Activity of cabbage extracts in deterring oviposition by the cabbage looper, Trichoplusia ni. In: Visser JH, Minks AK (eds) Proceeding of the fifth international symposium on insect-plant relationship. Pudoc, Wageninhen, pp 139–143Google Scholar
  115. Rios-Velasco C, Gallegos-Morales G, Cambero-Campos J, Cerna-Chávez E, Del Rincón-Castro MC, Valenzuela-García R (2011) Natural enemies of the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) in Coahuila, México. Fla Entomol 94:723–726CrossRefGoogle Scholar
  116. Royer L, McNeil JN (1992) Evidence of a male sex pheromone in the European corn borer Ostrinia nubilalis (Hubner) (Lepidoptera: Pyralidae). Can Entomol 124:113–116CrossRefGoogle Scholar
  117. Royer L, McNeil JN (1993) Male investment in the European corn borer Ostrinia nubilalis (Lepidoptera: Pyralidae) on female longevity and reproductive performance. Funct Ecol 7:209–215CrossRefGoogle Scholar
  118. Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9:283–300CrossRefPubMedGoogle Scholar
  119. Sanchez-Gracia A, Vieira FG, Rozas J (2009) Molecular evolution of the major chemosensory gene families in insects. Heredity 103:208–216CrossRefGoogle Scholar
  120. Schittko U, Hermsmeier D, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. II. Accumulation of plant mRNAs in response to insect-derived cues. Plant Physiol 125:701–710CrossRefPubMedPubMedCentralGoogle Scholar
  121. Schurr K, Holdaway FG (1970) Olfactory responses of female Ostrinia nubilalis (Lepidoptera: Pyraustinae). Entomol Exp Appl 13:455–461CrossRefGoogle Scholar
  122. Seino Y, Suzuki Y, Sogawa K (1996) An ovicidal substance produced by rice plants in response to oviposition by the white backed planthopper, Sogatella frucifera (Horvath) (Homoptera: Delphacidae). Appl Entomol Zool 31:467–473CrossRefGoogle Scholar
  123. Signoretti AG, Peñaflor MF, Bento JM (2012) Fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), female moths respond to herbivore-induced corn volatiles. Neotrop Entomol 41:22–26CrossRefPubMedGoogle Scholar
  124. Singh MN, Hemant KSY, Ram M, Shivakumar HG (2010) Microencapsulation: a promising technique for controlled drug delivery. Res Pharm Sci 5:65–77PubMedPubMedCentralGoogle Scholar
  125. Smadja CM, Canback B, Vitalis R, Gautier M, Ferrari J, Zhou JJ, Butlin RK (2012) Large-scale candidate gene scan reveals the role of chemoreceptor genes in host plant specialization and speciation in the pea aphid. Evolution 66:2723–2738CrossRefPubMedGoogle Scholar
  126. Smart R, Kiely A, Beale M, Vargas E, Carraher C, Kralicek AV, Christie DL, Chen C, Newcomb RD, Warr CG (2008) Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol 38:770–780CrossRefPubMedGoogle Scholar
  127. Sparks AN (1979) A review of the biology of the fall armyworm. Fla Entomol 62:82–87CrossRefGoogle Scholar
  128. Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Métraux JP, Brown R, Kazan K, Loon LCV, Dong X, Pieterse CMJ (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770CrossRefPubMedPubMedCentralGoogle Scholar
  129. Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci U S A 104:18842–18847CrossRefPubMedPubMedCentralGoogle Scholar
  130. Storer NP, Babcock JM, Schlenz M, Meade T, Thompson GD, Bing JW, Huckaba RM (2010) Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J Econ Entomol 103:1031–1038CrossRefPubMedGoogle Scholar
  131. Tabashnik BE, Carrière Y (2017) Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35:926–935CrossRefPubMedGoogle Scholar
  132. Tabashnik BE, Gassmann AJ, Crowder DW, Carrière Y (2008) Field-evolved resistance to Bt toxins. Nat Biotechnol 26:1074–1076CrossRefGoogle Scholar
  133. Tabashnik BE, Brévault T, Carrière Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510–521CrossRefPubMedGoogle Scholar
  134. Téllez-Rodríguez P, Raymond B, Morán-Bertot I, Rodríguez-Cabrera L, Wright DJ, Borroto CG, Ayra-Pardo C (2014) Strong oviposition preference for Bt over non-Bt maize in Spodoptera frugiperda and its implications for the evolution of resistance. BMC Biol 12:48CrossRefPubMedPubMedCentralGoogle Scholar
  135. Terenius O et al (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57:231–245CrossRefGoogle Scholar
  136. Todd EL, Poole RW (1980) Keys and illustrations for the armyworm moths of the Noctuid genus Spodoptera Guene’e from the Western Hemisphere. Ann Entomol Soc Am 73:722–738CrossRefGoogle Scholar
  137. van Poecke RMP, Dicke M (2004) Indirect defence of plants against herbivores: using Arabidopsis thaliana as a model plant. Plant Biol 6:387–401CrossRefPubMedGoogle Scholar
  138. Verhage A, van Wees SC, Pieterse CM (2010) Plant immunity: it’s the hormones talking, but what do they say? Plant Physiol 154:536–540CrossRefPubMedPubMedCentralGoogle Scholar
  139. Via S, Bouck AC, Skillman S (2000) Reproductive isolation between divergent races of pea aphids on two hosts. II. Selection against migrants and hybrids in the parental environments. Evolution 54:1626–1637CrossRefPubMedGoogle Scholar
  140. Vickery RA (1929) Studies of the fall armyworm in the Gulf coast region of Texas. USDA Tech Bull 138:63Google Scholar
  141. Wang Y, Li Z, Xu J, Zeng B, Ling L, You L, Chen Y, Huang Y, Tan A (2013) The CRISPR/Cas system mediates efficient genome engineering in Bombyx mori. Cell Res 23:1414–1416CrossRefPubMedPubMedCentralGoogle Scholar
  142. Whitford F, Quisenberry SS, Riley TJ, Lee JW (1988) Oviposition preference, mating compatibility, and development of two fall armyworm strains. Fla Entomol 71:234–243CrossRefGoogle Scholar
  143. Wicher D, Schäfer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson B (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:1007–1011CrossRefGoogle Scholar
  144. Xu P, Atkinson R, Jones DNM, Smith DP (2005) Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45:193–200CrossRefPubMedGoogle Scholar
  145. Yu SJ (1991) Insecticide resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith). Pestic Biochem Physiol 39:84–91CrossRefGoogle Scholar
  146. Yu SJ, Nguyen SN, Abo-Elghar GE (2003) Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith). Pestic Biochem Physiol 77:1–11CrossRefGoogle Scholar
  147. Zhu GH, Xu J, Cui Z, Dong XT, Ye ZF, Niu DJ, Huang YP, Dong SL (2016) Functional characterization of SlitPBP3 in Spodoptera litura by CRISPR/Cas9 mediated genome editing. Insect Biochem Mol Biol 75:1–9CrossRefPubMedGoogle Scholar
  148. Zhu-Salzman K, Luthe DS, Felton GW (2008) Arthropod-inducible proteins: broad spectrum defenses against multiple herbivores. Plant Physiol 146:852–858CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Camilo Ayra-Pardo
    • 1
  • Orlando Borras-Hidalgo
    • 2
  1. 1.Henan Provincial Key Laboratory of Funiu Mountain Insect BiologyNanyang Normal UniversityNanyangPeople’s Republic of China
  2. 2.Shandong Provincial Key Laboratory of Microbial Engineering, School of BiotechnologyQi Lu University of TechnologyJinanPeople’s Republic of China

Personalised recommendations