Advertisement

Salmonella in Poultry Meat Production

  • Divek V. T. Nair
  • Anup Kollanoor JohnyEmail author
Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Abstract

Salmonella is a major threat to human public health since it causes several foodborne outbreaks in the USA and worldwide. Poultry harbor Salmonella in their gastrointestinal tract and excrete the pathogen through the feces contaminating the environment. In addition, there are several sources of the pathogen at the farms and processing facilities. Until humans contract the infection by consuming contaminated poultry products, Salmonella must overcome several hurdles, including methods of control applied at the farm and processing facilities. Even after the adoption of intervention techniques at multiple levels, Salmonella still contaminates the poultry meat supply. In this chapter, we discuss Salmonella as a major pathogen transmitted through live poultry and poultry meat, a brief overview of different poultry-associated Salmonella serovars, including the familiar and the emerging, and various sources of contamination on farm and processing facilities. This information will help the industry to design and/or revisit the plans before appropriate intervention strategies are applied to control Salmonella in the poultry farms and processing environment in a highly automated vertically integrated production system.

Keywords

Salmonella Sources Farm Processing Poultry meat Contamination 

References

  1. Andino, A., Pendleton, S., Zhang, N., Chen, W., Critzer, F., & Hanning, I. (2014). Survival of Salmonella enterica in poultry feed is strain dependent. Poultry Science, 93(2), 441–447. [cited 2017 Sep 5]. Retrieved from https://academic.oup.com/ps/article-lookup/doi/10.3382/ps.2013-03401 Google Scholar
  2. Angulo, F. J., & Swerdlow, D. L. (1999). Epidemiology of human Salmonella enterica serovar enteritidis infections in the United States. In A. M. Saeed, R. K. Gast, M. E. Potter, & P. G. Wall (Eds.), Salmonella enterica serovar enteritidis in humans and animals: Epidemiology, pathogenesis and control. Ames, IA: Iowa State University Press. [cited 2017 Sep 6]. Retrieved from https://www.cabdirect.org/cabdirect/abstract/19992205149 Google Scholar
  3. Antunes, P., Mourão, J., Campos, J., & Peixe, L. (2016). Salmonellosis: The role of poultry meat. Clinical Microbiology and Infection, 22, 110. [cited 2017 Sep 5]. Retrieved from http://ac.els-cdn.com/S1198743X15010307/1-s2.0-S1198743X15010307-main.pdf?_tid=09c36dc4-9262-11e7-8fd5-00000aab0f01&acdnat=1504633722_6265da3f1319622904b415c62d0ce5ba Google Scholar
  4. Antunes, P., Réu, C., Sousa, J. C., Peixe, L., & Pestana, N. (2003). Incidence of Salmonella from poultry products and their susceptibility to antimicrobial agents. International Journal of Food Microbiology, 82(2), 97–103. [cited 2017 Sep 5]. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0168160502002519 Google Scholar
  5. Atterbury, R. J., Van Bergen, M. A. P., Ortiz, F., Lovell, M. A., Harris, J. A., De Boer, A., et al. (2007). Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Applied and Environmental Microbiology, 73(14), 4543–4549. [cited 2017 Sep 6]. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17526794 Google Scholar
  6. Bailey, J. S., Cox, N. A., & Berrang, M. E. (1994). Hatchery-acquired Salmonellae in broiler chicks. Poultry Science, 73(7), 1153–1157. [cited 2017 Sep 5]. Retrieved from https://academic.oup.com/ps/article-lookup/doi/10.3382/ps.0731153 Google Scholar
  7. Bailey, J. S., Cox, N. A., Craven, S. E., & Cosby, D. E. (2002). Serotype tracking of Salmonella through integrated broiler chicken operations. Journal of Food Protection, 65(5), 742–745. [cited 2017 Sep 5]. Retrieved from http://www.jfoodprotection.org/doi/pdf/10.4315/0362-028X-65.5.742 Google Scholar
  8. Barrow, P. A., & Freitas Neto, O. C. (2011). Pullorum disease and fowl typhoid—New thoughts on old diseases: A review. Avian Pathology, 40(1), 1–13. [cited 2017 Sep 5]. Retrieved from http://www.tandfonline.com/doi/abs/10.1080/03079457.2010.542575 Google Scholar
  9. Baskerville, A., Humphrey, T. J., Fitzgeorge, R. B., Cook, R. W., Chart, H., Rowe, B., et al. (1992). Airborne infection of laying hens with Salmonella enteritidis phage type 4. The Veterinary Record, 130(18), 395–398. [cited 2017 Sep 5]. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1609467 Google Scholar
  10. Bean, N. H., & Griffin, P. M. (1990). Foodborne disease outbreaks in the United States, 1973-1987: Pathogens, vehicles, and trends. Journal of Food Protection, 53(9), 804–817. [cited 2017 Sep 5]. Retrieved from http://jfoodprotection.org/doi/pdf/10.4315/0362-028X-53.9.804 Google Scholar
  11. Berrang, M. E., Bailey, J. S., Altekruse, S. F., Shaw, W. K., Patel, B. L., Meinersmann, R. J., et al. (2009). Prevalence, serotype, and antimicrobial resistance of Salmonella on broiler carcasses postpick and postchill in 20 U.S. processing plants. Journal of Food Protection, 72(8), 1610–1615. [cited 2017 Sep 5]. Retrieved from http://www.jfoodprotection.org/doi/pdf/10.4315/0362-028X-72.8.1610 Google Scholar
  12. Berrang, M. E., Buhr, R. J., Cason, J. A., & Dickens, J. A. (2001). Broiler carcass contamination with Campylobacter from feces during defeathering. Journal of Food Protection, 64(12), 2063–2066. [cited 2017 Sep 5]. Retrieved from http://www.jfoodprotection.org/doi/pdf/10.4315/0362-028X-64.12.2063 Google Scholar
  13. Bohaychuk, V. M., Gensler, G. E., King, R. K., Manninen, K. I., Sorensen, O., Wu, J. T., et al. (2006). Occurrence of pathogens in raw and ready-to-eat meat and poultry products collected from the retail marketplace in Edmonton, Alberta, Canada. Journal of Food Protection, 69(9), 2176–2182. [cited 2017 Sep 5]. Retrieved from http://jfoodprotection.org/doi/pdf/10.4315/0362-028X-69.9.2176 Google Scholar
  14. Bucher, O., Farrar, A. M., Totton, S. C., Wilkins, W., Waddell, L. A., Wilhelm, B. J., et al. (2012). A systematic review-meta-analysis of chilling interventions and a meta-regression of various processing interventions for Salmonella contamination of chicken. Preventive Veterinary Medicine, 103(1), 1–15.Google Scholar
  15. Bullis, K. L. (1977). The history of avian medicine in the U.S. II. Pullorum disease and fowl typhoid. Avian Diseases, 21(3), 422–429. [cited 2017 Sep 5]. Retrieved from http://www.jstor.org/stable/1589326 Google Scholar
  16. Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods—A review. International Journal of Food Microbiology, 94(3), 223–253.Google Scholar
  17. Bushnell, L. D., & Payne, L. F. (1932). Dissemination of pullorum disease in the incubator. In B. J. C. Te Hennepe (Ed.), International review of poultry science. Fifth World’s Poultry Congress and Exhibition, Rome (pp. 46–48). Holland, The Netherlands: Rotterdam. Retrieved from https://naldc.nal.usda.gov/naldc/download.xhtml?id=CAT40000897&content=PDF Google Scholar
  18. Callaway, T. R., Edrington, T. S., Anderson, R. C., Harvey, R. B., Genovese, K. J., Kennedy, C. N., et al. (2008). Probiotics, prebiotics and competitive exclusion for prophylaxis against bacterial disease. Animal Health Research Reviews, 9(2), 217–225. [cited 2017 Sep 6]. Retrieved from https://www.cambridge.org/core/services/aop-cambridge-core/content/view/69E86594270E6E333D68F6DF88D9CF9D/S1466252308001540a.pdf/probiotics_prebiotics_and_competitive_exclusion_for_prophylaxis_against_bacterial_disease.pdf Google Scholar
  19. Carrasco, E., Morales-Rueda, A., & García-Gimeno, R. M. (2012). Cross-contamination and recontamination by Salmonella in foods: A review. Food Research International, 45(2), 545–556. [cited 2017 Mar 11]. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0963996911006260 Google Scholar
  20. Cason, J. A., Cox, N. A., & Bailey, J. S. (1994). Transmission of Salmonella Typhimurium during hatching of broiler chicks. Avian Diseases, 38(3), 583. [cited 2017 Sep 5]. Retrieved from http://www.jstor.org/stable/1592082?origin=crossref
  21. CDC. (2000). Surveillance for foodborne disease outbreaks—United States, 1993-1997. [cited 2017 Sep 5]. Retrieved from https://www.cdc.gov/MMWr/preview/mmwrhtml/ss4901a1.htm
  22. CDC. (2013). Surveillance for foodborne disease outbreaks—United States, 1998–2008. [cited 2017 Jan 15]. Retrieved from https://www.cdc.gov/mmwr/preview/mmwrhtml/ss6202a1.htm
  23. CDC. (2016). Multi-state outbreak of Salmonella Oranienburg infections linked to shell eggs. [cited 2017 Sep 17]. Retrieved from https://www.cdc.gov/salmonella/oranienburg-10-16/
  24. Chalker, R. B., & Blaser, M. J. (1988). A review of human salmonellosis: Magnitude of Salmonella infection in the United States. Reviews of Infectious Diseases, 10(1), 111–124. [cited 2017 Sep 5]. Retrieved from http://www.jstor.org/stable/4454281 Google Scholar
  25. Chen, H.-M., Wang, Y., Su, L.-H., & Chiu, C.-H. (2013). Nontyphoid Salmonella infection: Microbiology, clinical features, and antimicrobial therapy. Pediatrics and Neonatology, 54(3), 147–152. [cited 2017 Sep 5]. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S1875957213000119 Google Scholar
  26. Chittick, P., Sulka, A., Tauxe, R. V., & Fry, A. M. (2006). A summary of national reports of foodborne outbreaks of Salmonella Heidelberg infections in the United States: Clues for disease prevention. Journal of Food Protection, 69(5), 1150–1153. [cited 2017 Sep 5]. Retrieved from http://jfoodprotection.org/doi/pdf/10.4315/0362-028X-69.5.1150 Google Scholar
  27. Clavijo, R. I., Loui, C., Andersen, G. L., Riley, L. W., & Lu, S. (2006). Identification of genes associated with survival of Salmonella enterica serovar Enteritidis in chicken egg albumen. Applied and Environmental Microbiology, 72(2), 1055–1064. [cited 2017 Sep 5]. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16461649
  28. Clouser, C. S., Doores, S., Mast, M. G., & Knabel, S. J. (1995a). The role of defeathering in the contamination of turkey skin by Salmonella species and Listeria monocytogenes. Poultry Science, 74(4), 723–731. [cited 2017 Sep 6]. Retrieved from https://watermark.silverchair.com/api/watermark?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAgEwggH9BgkqhkiG9w0BBwagggHuMIIB6gIBADCCAeMGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMPP8pXrAo5qEytwnOAgEQgIIBtAfzUrNnJTQuxEYb7yOd2_jVLuZDk2rL1gqjt3HJEPxJ0 Google Scholar
  29. Clouser, C. S., Knabel, S. J., Mast, M. G., & Doores, S. (1995b). Effect of type of defeathering system on Salmonella cross-contamination during commercial processing. Poultry Science, 74(4), 732–741. [cited 2017 Sep 6]. Retrieved from https://academic.oup.com/ps/article-lookup/doi/10.3382/ps.0740732 Google Scholar
  30. Cooper, G. L., Venables, L. M., & Lever, M. S. (1996). Airborne challenge of chickens vaccinated orally with the genetically-defined Salmonella enteritidis aroA strain CVL30. The Veterinary Record, 139(18), 447–448. [cited 2017 Sep 5]. Retrieved from http://veterinaryrecord.bmj.com/cgi/doi/10.1136/vr.139.18.447 Google Scholar
  31. Cox, N. A., Berrang, M. E., & Cason, J. A. (2000). Salmonella penetration of egg shells and proliferation in broiler hatching eggs—A review. Poultry Science, 79(11), 1571–1574. [cited 2017 Sep 5]. Retrieved from https://academic.oup.com/ps/article-lookup/doi/10.1093/ps/79.11.1571 Google Scholar
  32. Crespo, R., Jeffrey, J. S., Chin, R. P., Sentíes-Cué, G., & Shivaprasad, H. L. (2004). Phenotypic and genotypic characterization of Salmonella arizonae from an integrated turkey operation. Avian Diseases, 48(2), 344–350. [cited 2017 Sep 5]. Retrieved from http://www.bioone.org/doi/abs/10.1637/7116
  33. Cui, S., Ge, B., Zheng, J., & Meng, J. (2005). Prevalence and antimicrobial resistance of Campylobacter spp. and Salmonella serovars in organic chickens from Maryland retail stores. Applied and Environmental Microbiology, 71(7), 4108–4111. [cited 2017 Sep 5]. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16000828 Google Scholar
  34. Currie, A., MaCdougall, L., Aramini, J., Gaulin, C., Ahmed, R., & Issacs, S. (2005). Frozen chicken nuggets and strips and eggs are leading risk factors for Salmonella Heidelberg infections in Canada. Epidemiology and Infection, 133(5), 809. [cited 2017 Sep 5]. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16181499 Google Scholar
  35. Davies, R. H., & Wray, C. (1996). Persistence of Salmonella enteritidis in poultry units and poultry food. British Poultry Science, 37(3), 589–596. [cited 2017 Sep 5]. Retrieved from http://www.tandfonline.com/doi/abs/10.1080/00071669608417889 Google Scholar
  36. De Reu, K., Grijspeerdt, K., Messens, W., Heyndrickx, M., Uyttendaele, M., Debevere, J., et al. (2006). Eggshell factors influencing eggshell penetration and whole egg contamination by different bacteria, including Salmonella Enteritidis. International Journal of Food Microbiology, 112(3), 253–260. [cited 2017 Sep 6]. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0168160506002303
  37. Desmidt, M., Ducatelle, R., & Haesebrouck, F. (1997). Pathogenesis of Salmonella Enteritidis phage type four after experimental infection of young chickens. Veterinary Microbiology, 56((1-2)), 99–109. [cited 2017 Sep 5]. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0378113596013508
  38. Dhanoa, A., & Fatt, Q. K. (2009). Non-typhoidal Salmonella bacteraemia: Epidemiology, clinical characteristics and its’ association with severe immunosuppression. Annals of Clinical Microbiology and Antimicrobials, 8(1), 15. [cited 2017 Sep 5]. Retrieved from https://ann-clinmicrob.biomedcentral.com/track/pdf/10.1186/1476-0711-8-15?site=ann-clinmicrob.biomedcentral.com Google Scholar
  39. Domınguez, C., Gómez, I., & Zumalacárregui, J. (2002). Prevalence of Salmonella and Campylobacter in retail chicken meat in Spain. International Journal of Food Microbiology, 72(1-2), 165–168. [cited 2017 Sep 6]. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0168160501006389 Google Scholar
  40. Donalson, L. M., Kim, W.-K., Chalova, V. I., Herrera, P., Woodward, C. L., McReynolds, J. L., et al. (2007). In vitro anaerobic incubation of Salmonella enterica serotype Typhimurium and laying hen cecal bacteria in poultry feed substrates and a fructooligosaccharide prebiotic. Anaerobe, 13(5-6), 208–214. [cited 2017 Sep 6]. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S1075996407000303
  41. Donalson, L. M., McReynolds, J. L., Kim, W. K., Chalova, V. I., Woodward, C. L., Kubena, L. F., et al. (2008). The influence of a fructooligosaccharide prebiotic combined with alfalfa molt diets on the gastrointestinal tract fermentation, Salmonella Enteritidis infection, and intestinal shedding in laying hens. Poultry Science, 87(7), 1253–1262. [cited 2017 Sep 6]. Retrieved from https://academic.oup.com/ps/article-lookup/doi/10.3382/ps.2007-00166
  42. Duchet-Suchaux, M., Léchopier, P., Marly, J., Bernardet, P., & Delaunay, R. (1995). Quantification of experimental Salmonella Enteritidis carrier state in B13 leghorn chicks. Avian Diseases, 39(4), 796–803. [cited 2017 Sep 5]. Retrieved from http://www.jstor.org/stable/1592416
  43. Dutil, L., Irwin, R., Finley, R., Ng, L. K., Avery, B., Boerlin, P., et al. (2010). Ceftiofur resistance in Salmonella enterica serovar Heidelberg from chicken meat and humans, Canada. Emerging Infectious Diseases, 16(1), 48–54. [cited 2017 Sep 5]. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20031042 Google Scholar
  44. Fanelli, M. J., Sadler, W. W., & Brownell, J. R. (1970). Preliminary studies on persistence of Salmonellae in poultry litter. Avian Diseases, 14(1), 131. [cited 2017 Sep 5]. Retrieved from http://www.jstor.org/stable/1588564?origin=crossref Google Scholar
  45. Feasey, N. A., Dougan, G., Kingsley, R. A., Heyderman, R. S., & Gordon, M. A. (2012). Invasive non-typhoidal Salmonella disease: An emerging and neglected tropical disease in Africa. Lancet, 379, 2489–2499. [cited 2017 Sep 5]. Retrieved from http://ac.els-cdn.com/S0140673611617522/1-s2.0-S0140673611617522-main.pdf?_tid=45bdafda-9260-11e7-a723-00000aacb362&acdnat=1504632964_3f1afdbdc5cb208c61499dde7731a8b5 Google Scholar
  46. Foley, S. L., Lynne, A. M., & Nayak, R. (2008). Salmonella challenges: Prevalence in swine and poultry and potential pathogenicity of such isolates. Journal of Animal Science, 86(14 Suppl), E149–E162. [cited 2017 Sep 5]. Retrieved from http://www.animalsciencepublications.org/publications/jas/abstracts/86/14/14 Google Scholar
  47. Foley, S. L., Nayak, R., Hanning, I. B., Johnson, T. J., Han, J., & Ricke, S. C. (2011). Population dynamics of Salmonella enterica serotypes in commercial egg and poultry production. Applied and Environmental Microbiology, 77(13), 4273–4279.Google Scholar
  48. FSIS. (2014). FSIS. Compliance guide: Modernization of poultry slaughter inspection: Amendments to chilling requirements. [cited 2017 Sep 6]. Retrieved from https://www.fsis.usda.gov/wps/wcm/connect/7a0a728e-3b29-49e9-9c1b-ec55f2f04887/Chilling-Requirements-1014.pdf?MOD=AJPERES
  49. FSIS. (2015). FSIS - Compliance guideline for controlling Salmonella and Campylobacter in raw poultry. [cited 2017 Sep 6]. Retrieved from https://www.fsis.usda.gov/wps/wcm/connect/6732c082-af40-415e-9b57-90533ea4c252/Controlling-Salmonella-Campylobacter-Poultry-2015.pdf?MOD=AJPERES
  50. FSIS. (2017). Table of safe and suitable ingredients: Antimicrobial update 5/25/2017. [cited 2017 Sep 6]. Retrieved from http://www.fsis.usda.gov/wps/wcm/connect/bab10e09-aefa-483b-8be8-809a1f051d4c/7120
  51. Gantois, I., Ducatelle, R., Pasmans, F., Haesebrouck, F., & Van Immerseel, F. (2008). Salmonella enterica serovar Enteritidis genes induced during oviduct colonization and egg contamination in laying hens. Applied and Environmental Microbiology, 74(21), 6616–6622. [cited 2017 Sep 5]. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18776023
  52. Gast, R. K. (1994). Understanding Salmonella Enteritidis in laying chickens: The contributions of experimental infections. International Journal of Food Microbiology, 21(1-2), 107–116. [cited 2017 Sep 5]. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/0168160594902046
  53. Gast, R. K., & Benson, S. T. (1995). The comparative virulence for chicks of Salmonella Enteritidis phage type 4 isolates and isolates of phage types commonly found in poultry in the United States. Avian Diseases, 39(3), 567–574. [cited 2017 Sep 5]. Retrieved from http://www.jstor.org/stable/1591810
  54. Gast, R. K., & Benson, S. T. (1996). Intestinal colonization and organ invasion in chicks experimentally infected with Salmonella Enteritidis phage type 4 and other phage types isolated from poultry in the intestinal colonization and organ invasion in chicks experimentally infected with Salmonella. Avian Diseases, 40(4), 853–857. [cited 2017 Sep 5]. Retrieved from http://www.jstor.org/stable/1592309
  55. Gast, R. K., Guard-Bouldin, J., & Holt, P. S. (2004). Colonization of reproductive organs and internal contamination of eggs after experimental infection of laying hens with Salmonella Heidelberg and Salmonella Enteritidis. Avian Diseases, 48(4), 863–869. [cited 2017 Sep 5]. Retrieved from https://naldc.nal.usda.gov/download/36855/PDF
  56. Gast, R. K., Guraya, R., Guard-Bouldin, J., Holt, P. S., & Moore, R. W. (2007). Colonization of specific regions of the reproductive tract and deposition at different locations inside eggs laid by hens infected with Salmonella Enteritidis or Salmonella Heidelberg. Avian Diseases, 51(1), 40–44. [cited 2017 Sep 5]. Retrieved from https://pubag.nal.usda.gov/pubag/downloadPDF.xhtml?id=20217&content=PDF
  57. Gast, R. K., Mitchell, B. W., & Holt, P. S. (1998). Airborne transmission of Salmonella Enteritidis infection between groups of chicks in controlled-environment isolation cabinets. Avian Diseases, 42(2), 315. [cited 2017 Sep 5]. Retrieved from http://www.jstor.org/stable/1592482?origin=crossref
  58. Golden, N. J., Marks, H. H., Coleman, M. E., Schroeder, C. M., Bauer, N. E., & Schlosser, W. D. (2008). Review of induced molting by feed removal and contamination of eggs with Salmonella enterica serovar Enteritidis. Veterinary Microbiology, 131(3-4), 215–228. [cited 2017 Sep 5]. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0378113508001053
  59. Gregory, N. G. (2005). Recent concerns about stunning and slaughter. Meat Science, 70(3), 481–491. [cited 2017 Sep 5]. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0309174005000458 Google Scholar
  60. Han, J., Lynne, A. M., David, D. E., Tang, H., Xu, J., Nayak, R., et al. (2012). DNA sequence analysis of plasmids from multidrug resistant Salmonella enterica serotype Heidelberg isolates. PLoS One, 7(12), e51160. [cited 2017 Sep 5]. Retrieved from http://dx.plos.org/10.1371/journal.pone.0051160 Google Scholar
  61. Heyndrickx, M., Vandekerchove, D., Herman, L., Rollier, I., Grijspeerdt, K., & De Zutter, L. (2002). Routes for Salmonella contamination of poultry meat: Epidemiological study from hatchery to slaughterhouse. Epidemiology and Infection, 129, 253–265. [cited 2017 Sep 5]. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869884/pdf/12403101.pdf Google Scholar
  62. Higgins, S. E., Higgins, J. P., Wolfenden, A. D., Henderson, S. N., Torres-Rodriguez, A., Tellez, G., et al. (2008). Evaluation of a Lactobacillus-based probiotic culture for the reduction of Salmonella Enteritidis in neonatal broiler chicks. Poultry Science, 87(1), 27–31. [cited 2017 Sep 6]. Retrieved from https://academic.oup.com/ps/article-lookup/doi/10.3382/ps.2007-00210
  63. Higgins, R., Malo, R., Rene-Roberge, E., & Gauthier, R. (1982). Studies on the dissemination of Salmonella in nine broiler-chicken flocks. Avian Diseases, 26(1), 26. [cited 2017 Sep 5]. Retrieved from http://www.jstor.org/stable/1590021?origin=crossref Google Scholar
  64. Hindermann, D., Gopinath, G., Chase, H., Negrete, F., Althaus, D., Zurfluh, K., et al. (2017). Salmonella enterica serovar Infantis from food and human infections, Switzerland, 2010–2015: Poultry-related multi-drug resistant clones and an emerging ESBL producing clonal lineage. Frontiers in Microbiology, 8, 1322. [cited 2017 Sep 17]. Retrieved from http://journal.frontiersin.org/article/10.3389/fmicb.2017.01322/full
  65. Hoelzer, K., Moreno Switt, A., Wiedmann, M., Werker, D., Signs, K., Davis, C., et al. (2011). Animal contact as a source of human non-typhoidal salmonellosis. Veterinary Research, 42(1), 34. [cited 2017 Sep 5]. Retrieved from http://www.veterinaryresearch.org/content/42/1/34 Google Scholar
  66. Hoffmann, M., Zhao, S., Pettengill, J., Luo, Y., Monday, S. R., Abbott, J., et al. (2014). Comparative genomic analysis and virulence differences in closely related Salmonella enterica serotype Heidelberg isolates from humans, retail meats, and animals. Genome Biology and Evolution, 6(5), 1046–1068.Google Scholar
  67. Humphrey, T. J., Baskerville, A., Chart, H., Rowe, B., & Whitehead, A. (1992). Infection of laying hens with Salmonella Enteritidis PT4 by conjunctival challenge. The Veterinary Record, 131(17), 386–388. [cited 2017 Sep 5]. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1455584
  68. Hutt, F. B. (1938). The geneticist’s objectives in poultry improvement. The American Naturalist, 72(740), 268–284. [cited 2017 Sep 5]. Retrieved from http://www.jstor.org/stable/2457554 Google Scholar
  69. Jackson, B. R., Griffin, P. M., Cole, D., Walsh, K. A., & Chai, S. J. (2013). Outbreak-associated Salmonella enterica serotypes and food commodities, United States, 1998-2008. Emerging Infectious Diseases, 19(8), 1239–1244. [cited 2017 Sep 6]. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23876503 Google Scholar
  70. Jain, S., & Chen, J. (2007). Attachment and biofilm formation by various serotypes of Salmonella as influenced by cellulose production and thin aggregative fimbriae biosynthesis. Journal of Food Protection, 70(11), 2473–2479. [cited 2017 Sep 5]. Retrieved from http://www.jfoodprotection.org/doi/pdf/10.4315/0362-028X-70.11.2473 Google Scholar
  71. Jørgensen, F., Bailey, R., Williams, S., Henderson, P., Wareing, D. R. A., Bolton, F. J., et al. (2002). Prevalence and numbers of Salmonella and Campylobacter spp. on raw, whole chickens in relation to sampling methods. International Journal of Food Microbiology, 76(1-2), 151–164. [cited 2017 Sep 6]. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12038572 Google Scholar
  72. Kim, K. Y., Frank, J. F., & Craven, S. E. (1996). Three-dimensional visualization of Salmonella attachment to poultry skin using confocal scanning laser microscopy. Letters in Applied Microbiology, 22(4), 280–282. [cited 2016 Nov 18]. Retrieved from http://doi.wiley.com/10.1111/j.1472-765X.1996.tb01161.x Google Scholar
  73. Kollanoor Johny, A., Baskaran, S. A., Charles, A. S., Amalaradjou, M. A., Darre, M. J., Khan, M. I., et al. (2009). Prophylactic supplementation of caprylic acid in feed reduces Salmonella Enteritidis colonization in commercial broiler chicks. Journal of Food Protection, 72(4), 722–727. [cited 2017 Mar 26]. Retrieved from http://jfoodprotection.org/doi/pdf/10.4315/0362-028X-72.4.722
  74. Kollanoor Johny, A., Mattson, T., Baskaran, S. A., Amalaradjou, M. A., Babapoor, S., March, B., et al. (2012). Reduction of Salmonella enterica serovar Enteritidis colonization in 20-day-old broiler chickens by the plant-derived compounds trans-cinnamaldehyde and eugenol. Applied and Environmental Microbiology, 78(8), 2981–2987. [cited 2017 Mar 11]. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22327574
  75. Lammerding, A. M., Garcia, M. M., Mann, E. D., Robinson, Y., Ward, W. J. D., Truscott, R. B., et al. (1988). Prevalence of Salmonella and thermophilic Campylobacter in fresh pork, beef, veal and poultry in Canada. Journal of Food Protection, 51(1), 47–52. [cited 2017 Sep 5]. Retrieved from http://jfoodprotection.org/doi/pdf/10.4315/0362-028X-51.1.47?code=fopr-site Google Scholar
  76. Lee, L. A., Puhr, N. D., Maloney, E. K., Bean, N. H., & Tauxe, R. V. (1994). Increase in antimicrobial-resistant Salmonella infections in the United States, 1989-1990. The Journal of Infectious Diseases, 170(1), 128–134. [cited 2017 Sep 6]. Retrieved from https://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/170.1.128 Google Scholar
  77. Lestari, S. I., Han, F., Wang, F., & Ge, B. (2009). Prevalence and antimicrobial resistance of Salmonella serovars in conventional and organic chickens from Louisiana retail stores. Journal of Food Protection, 72(6), 1165–1172. [cited 2017 Sep 6]. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19610326 Google Scholar
  78. Liebana, E., Garcia-Migura, L., Clouting, C., Clifton-Hadley, F. A., Breslin, M., & Davies, R. H. (2003). Molecular fingerprinting evidence of the contribution of wildlife vectors in the maintenance of Salmonella Enteritidis infection in layer farms. Journal of Applied Microbiology, 94(6), 1024–1029. [cited 2017 Sep 5]. Retrieved from http://doi.wiley.com/10.1046/j.1365-2672.2003.01924.x
  79. Liljebjelke, K. A., Hofacre, C. L., Liu, T., White, D. G., Ayers, S., Young, S., et al. (2005). Vertical and horizontal transmission of Salmonella within integrated broiler production system. Foodborne Pathogens and Disease, 2(1), 90–102. [cited 2017 Sep 5]. Retrieved from http://www.liebertonline.com/doi/abs/10.1089/fpd.2005.2.90 Google Scholar
  80. Lillard, H. S. (1990). The impact of commercial processing procedures on the bacterial contamination and cross-contamination of broiler carcasses. Journal of Food Protection, 53(3), 202–207.Google Scholar
  81. Logue, C. M., Sherwood, J. S., Olah, P. A., Elijah, L. M., & Dockter, M. R. (2003). The incidence of antimicrobial-resistant Salmonella spp. on freshly processed poultry from US Midwestern processing plants. Journal of Applied Microbiology, 94(1), 16–24. [cited 2017 Sep 5]. Retrieved from http://doi.wiley.com/10.1046/j.1365-2672.2003.01815.x Google Scholar
  82. Maciorowski, K. G., Herrera, P., Kundinger, M. M., & Ricke, S. C. (2006). Animal feed production and contamination by foodborne Salmonella. Journal für Verbraucherschutz und Lebensmittelsicherheit, 1(3), 197–209. [cited 2017 Sep 5]. Retrieved from http://link.springer.com/10.1007/s00003-006-0036-z Google Scholar
  83. Maciorowski, K. G., Jones, F. T., Pillai, S. D., & Ricke, S. C. (2004). Incidence, sources, and control of food-borne Salmonella spp. in poultry feeds. World’s Poultry Science Journal, 60(4), 446–457. [cited 2017 Sep 5]. Retrieved from https://www.cambridge.org/core/journals/world-s-poultry-science-journal/article/incidence-sources-and-control-of-food-borne-salmonella-spp-in-poultry-feeds/606CF89458709DD95ACBC1E48ECE67E0 Google Scholar
  84. Marder, E. P., Cieslak, P. R., Cronquist, A. B., Dunn, J., Lathrop, S., Rabatsky-Ehr, T., et al. (2017). Incidence and trends of infections with pathogens transmitted commonly through food and the effect of increasing use of culture-independent diagnostic tests on surveillance—Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2013–2016. MMWR. Morbidity and Mortality Weekly Report, 66(15), 397–403. [cited 2017 Sep 6]. Retrieved from http://www.cdc.gov/mmwr/volumes/66/wr/mm6615a1.htm Google Scholar
  85. McIlroy, S. G., McCracken, R. M., Neill, S. D., & O’Brien, J. J. (1989). Control, prevention and eradication of Salmonella Enteritidis infection in broiler and broiler breeder flocks. The Veterinary Record, 125(22), 545–548. [cited 2017 Sep 6]. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2690452
  86. Medeiros, M. A. N., Oliveira, D. C. N. D., Rodrigues, D. D. P., & Freitas, D. R. C. D. (2011). Prevalence and antimicrobial resistance of Salmonella in chicken carcasses at retail in 15 Brazilian cities. Revista Panamericana de Salud Pública, 30(6), 555. [cited 2017 Sep 5]. Retrieved from http://www.scielosp.org/pdf/rpsp/v30n6/a10v30n6.pdf Google Scholar
  87. Meerburg, B. G., & Kijlstra, A. (2007). Role of rodents in transmission of Salmonella and Campylobacter. Journal of the Science of Food and Agriculture, 87(15), 2774–2781. [cited 2017 Sep 5]. Retrieved from http://doi.wiley.com/10.1002/jsfa.3004 Google Scholar
  88. Milillo, S. R., & Ricke, S. C. (2010). Synergistic reduction of Salmonella in a model raw chicken media using a combined thermal and acidified organic acid salt intervention treatment. Journal of Food Science, 75(2), M121–M125. [cited 2017 Sep 6]..  https://doi.org/10.1111/j.1750-3841.2009.01510.x Google Scholar
  89. Nagel, G. M., Bauermeister, L. J., Bratcher, C. L., Singh, M., & McKee, S. R. (2013). Salmonella and Campylobacter reduction and quality characteristics of poultry carcasses treated with various antimicrobials in a post-chill immersion tank. International Journal of Food Microbiology, 165(3), 281–286.  https://doi.org/10.1016/j.ijfoodmicro.2013.05.016 Google Scholar
  90. Nair, D. V. T., Kiess, A., Nannapaneni, R., Schilling, W., & Sharma, C. S. (2015). The combined efficacy of carvacrol and modified atmosphere packaging on the survival of Salmonella, Campylobacter jejuni and lactic acid bacteria on Turkey breast cutlets. Food Microbiology, 49, 134.Google Scholar
  91. Nair, D. V. T., Nannapaneni, R., Kiess, A., Schilling, W., & Sharma, C. S. (2014). Reduction of Salmonella on Turkey breast cutlets by plant-derived compounds. Foodborne Pathogens and Disease, 11(12), 981–987. [cited 2017 Mar 11]. Retrieved from http://online.liebertpub.com/doi/abs/10.1089/fpd.2014.1803 Google Scholar
  92. Nair, D., Thomas, J. V., & Kollanoor-Johny, A. (2016). Propionibacterium freudenreichii reduces cecal colonization of multidrug-resistant Salmonella Heidelberg in turkey poults. In Poultry Science Association 105th Annual Meeting Abstracts (pp. 21–22). Retrieved from http://www.poultryscience.org/psa16/abstracts/2016-PSA-Abstracts.pdf
  93. NCC. (2017). Per capita consumption of poultry and livestock, 1965 to estimated 2018, in pounds - The National Chicken Council. [cited 2017 Sep 6]. Retrieved from http://www.nationalchickencouncil.org/about-the-industry/statistics/per-capita-consumption-of-poultry-and-livestock-1965-to-estimated-2012-in-pounds/
  94. Nchez, M. X. S., Fluckey, W. M., Brashears, M. M., & McKee, S. R. (2002). Antibiotic susceptibility of Campylobacter spp. and Salmonella spp. in broilers processed in air-chilled and immersion-chilled environments. Journal of Food Protection, 65(6), 948–956.Google Scholar
  95. Nde, C. W., McEvoy, J. M., Sherwood, J. S., & Logue, C. M. (2007). Cross contamination of Turkey carcasses by Salmonella species during defeathering. Poultry Science, 86(1), 162–167. [cited 2017 Sep 5]. Retrieved from https://academic.oup.com/ps/article-lookup/doi/10.1093/ps/86.1.162 Google Scholar
  96. Newell, D. G., & Fearnley, C. (2003). Sources of Campylobacter colonization in broiler chickens. Applied and Environmental Microbiology, 69(8), 4343–4351. [cited 2017 Sep 5]. Retrieved from http://aem.asm.org/content/69/8/4343.short Google Scholar
  97. Oakley, B. B., Lillehoj, H. S., Kogut, M. H., Kim, W. K., Maurer, J. J., Pedroso, A., et al. (2014). The chicken gastrointestinal microbiome. FEMS Microbiology Letters, 360(2), 100–112. [cited 2017 Sep 5]. Retrieved from https://academic.oup.com/femsle/article-lookup/doi/10.1111/1574-6968.12608 Google Scholar
  98. Park, S. H., Jarquin, R., Hanning, I., Almeida, G., & Ricke, S. C. (2011). Detection of Salmonella spp. survival and virulence in poultry feed by targeting the hilA gene. Journal of Applied Microbiology, 111(2), 426–432. [cited 2017 Sep 5].  https://doi.org/10.1111/j.1365-2672.2011.05054.x Google Scholar
  99. Parveen, S., Taabodi, M., Schwarz, J. G., Oscar, T. P., Harter-Dennis, J., & White, D. G. (2007). Prevalence and antimicrobial resistance of Salmonella recovered from processed poultry. Journal of Food Protection, 70(11), 2466–2472. [cited 2017 Sep 6]. Retrieved from https://www.ars.usda.gov/ARSUserFiles/80720500/Poultry/33.pdf Google Scholar
  100. Patterson, J., & Burkholder, K. (2003). Application of prebiotics and probiotics in poultry production. Poultry Science, 82(4), 627–631. [cited 2017 Sep 6]. Retrieved from https://academic.oup.com/ps/article-lookup/doi/10.1093/ps/82.4.627 Google Scholar
  101. Poppe, C. (2000). In C. Wray & A. Wray (Eds.), Salmonella in domestic fowl (p. 194). Wallingford, UK: CABI Publishing. [cited 2017 Sep 5]. Retrieved from http://dl.dairycattlecenter.com/book/SalmonellainDomesticAnimals.pdf#page=117 Google Scholar
  102. Poppe, C., Barnum, D. A., & Mitchell, W. R. (1986). Effect of chlorination of drinking water on experimental Salmonella infection in poultry. Avian Diseases, 30(2), 362. [cited 2017 Sep 5]. Retrieved from: http://www.jstor.org/stable/1590543?origin=crossref Google Scholar
  103. Porwollik, S., Santiviago, C. A., Cheng, P., Florea, L., Jackson, S., & McClelland, M. (2005). Differences in gene content between Salmonella enterica serovar Enteritidis isolates and comparison to closely related serovars Gallinarum and Dublin. Journal of Bacteriology, 187(18), 6545–6555. [cited 2017 Sep 5]. Retrieved from: http://www.ncbi.nlm.nih.gov/pubmed/16159788
  104. Rabsch, W., Tschäpe, H., & Bäumler, A. J. (2001). Non-typhoidal salmonellosis: Emerging problems. Microbes and Infection, 3(3), 237–247. [cited 2017 Sep 5]. Retrieved from http://ac.els-cdn.com/S1286457901013752/1-s2.0-S1286457901013752-main.pdf?_tid=713b4854-9272-11e7-86c1-00000aacb35e&acdnat=1504640768_4c270667355101c02cd4681f69c5da33 Google Scholar
  105. Renwick, S. A., Irwin, R. J., Clarke, R. C., McNab, W. B., Poppe, C., & McEwen, S. A. (1992). Epidemiological associations between characteristics of registered broiler chicken flocks in Canada and the Salmonella culture status of floor litter and drinking water. The Canadian Veterinary Journal, 33(7), 449–458. [cited 2017 Sep 5]. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17424037 Google Scholar
  106. Rodrigue, D. C., Tauxe, R. V., & Rowe, A. B. (1990). International increase in Salmonella Enteritidis: A new pandemic? Epidemiology and Infection, 105, 21–27. [cited 2017 Sep 5]. Retrieved from https://www.cambridge.org/core/services/aop-cambridge-core/content/view/A41CC08D3D6213170721E3C22F128140/S0950268800047609a.pdf/international_increase_in_salmonella_enteritidis_a_new_pandemic.pdf
  107. Roy, P., Dhillon, A. S., Lauerman, L. H., Schaberg, D. M., Bandli, D., & Johnson, S. (2002). Results of Salmonella isolation from poultry products, poultry, poultry environment, and other characteristics. Avian Diseases, 46(1), 17–24. [cited 2017 Sep 5]. Retrieved from http://www.bioone.org/doi/abs/10.1637/0005-2086%282002%29046%5B0017%3AROSIFP%5D2.0.CO%3B2 Google Scholar
  108. Russell, S. M. (2008). Chemical residuals in the environment and on chicken carcasses associated with scalding chickens in an acidic, copper sulfate-based commercial sanitizer during poultry processing. Journal of Food Protection, 71(1), 226–230.Google Scholar
  109. Scharff, R. L. (2012). Economic burden from health losses due to foodborne illness in the United States. ProQuest. [cited 2017 Sep 5]. Retrieved from https://search.proquest.com/docview/913142449?pq-origsite=gscholar
  110. Schleifer, J. H., Juven, B. J., Beard, C. W., & Cox, N. A. (1984). The susceptibility of chicks to Salmonella Montevideo in artificially contaminated poultry feed. Avian Diseases, 28(2), 497. [cited 2017 Sep 5]. Retrieved from http://www.jstor.org/stable/1590357?origin=crossref
  111. Shah, D. H., Zhou, X., Addwebi, T., Davis, M. A., Orfe, L., Call, D. R., et al. (2011). Cell invasion of poultry-associated Salmonella enterica serovar Enteritidis isolates is associated with pathogenicity, motility and proteins secreted by the type III secretion system. Microbiology, 157(5), 1428–1445. [cited 2017 Sep 5]. Retrieved from http://www.microbiologyresearch.org/docserver/fulltext/micro/157/5/1428_mic044461.pdf?expires=1504644873&id=id&accname=guest&checksum=4EA85DB3BE33EA6144E037CB5C48641C
  112. Shivaprasad, H. L. (2000). Fowl typhoid and pullorum disease. Revue Scientifique et Technique, 19(2), 405–424. [cited 2017 Sep 5]. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10935271 Google Scholar
  113. Skov, M. N., Madsen, J. J., Rahbek, C., Lodal, J., Jespersen, J. B., Jørgensen, J. C., et al. (2008). Transmission of Salmonella between wildlife and meat-production animals in Denmark. Journal of Applied Microbiology, 105(5), 1558–1568. [cited 2017 Sep 5].  https://doi.org/10.1111/j.1365-2672.2008.03914.x Google Scholar
  114. Slader, J., Domingue, G., Jørgensen, F., McAlpine, K., Owen, R. J., Bolton, F. J., et al. (2002). Impact of transport crate reuse and of catching and processing on Campylobacter and Salmonella contamination of broiler chickens. Applied and Environmental Microbiology, 68(2), 713–719. [cited 2017 Sep 5]. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11823211 Google Scholar
  115. Stafseth, H. J., & Mallmann, W. L. (1928). Progress report on poultry disease investigation at the Michigan experiment station. Poultry Science, 8(1), 19–22. [cited 2017 Sep 5]. Retrieved from https://academic.oup.com/ps/article-lookup/doi/10.3382/ps.0080019 Google Scholar
  116. Svobodová, I., Bořilová, G., Hulánková, R., & Steinhauserová, I. (2012). Microbiological quality of broiler carcasses during slaughter processing. Acta Veterinaria, 81(1), 37–42. [cited 2017 Sep 6]. Retrieved from http://actavet.vfu.cz/81/1/0037/ Google Scholar
  117. Tamblyn, K. C., & Conner, D. E. (1997). Bactericidal activity of organic acids against Salmonella Typhimurium attached to broiler chicken skin. Journal of Food Protection, 60(6), 629–633.Google Scholar
  118. Tamblyn, K. C., Conner, D. E., & Bilgili, S. F. (1997). Utilization of the skin attachment model to determine the antibacterial efficacy of potential carcass treatments. Poultry Science, 76(9), 1318–1323. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9276898 Google Scholar
  119. Tauxe, R. V., Cavanagh, T. R., & Cohen, M. L. (1989). Interspecies gene transfer in vivo producing an outbreak of multiply resistant shigellosis. The Journal of Infectious Diseases, 160, 1067–1070. [cited 2017 Sep 5]. Retrieved from https://watermark.silverchair.com/api/watermark?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAg0wggIJBgkqhkiG9w0BBwagggH6MIIB9gIBADCCAe8GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMJHjVYc9MYCgAb14_AgEQgIIBwNPvoDvithlNDqVUjz3greFphY1_8SV692TTzjCWIIYG
  120. Tellez, G., Pixley, C., Wolfenden, R. E., Layton, S. L., & Hargis, B. M. (2012). Probiotics/direct fed microbials for Salmonella control in poultry. Food Research International, 45(2), 628–633. [cited 2017 Sep 6]. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0963996911002067 Google Scholar
  121. Tirado, C., & Schmidt, K. (2001). WHO surveillance programme for control of foodborne infections and intoxications: Preliminary results and trends across Greater Europe. The Journal of Infection, 43, 80. [cited 2017 Sep 5]. Retrieved from http://ac.els-cdn.com/S0163445301908618/1-s2.0-S0163445301908618-main.pdf?_tid=047937c4-925b-11e7-8e39-00000aab0f27&acdnat=1504630707_e9e8acdcf8bd25a720ce46c4b2556730 Google Scholar
  122. Tittsler, R. P. (1930). Septicemic Salmonella Pullorum infection in adult fowls. Poultry Science, 10(1), 17–23. [cited 2017 Sep 5]. Retrieved from https://academic.oup.com/ps/article-lookup/doi/10.3382/ps.0100017
  123. Tizard, I. (2004). Salmonellosis in wild birds. Seminars in Avian and Exotic Pet Medicine, 13(2), 50–66. [cited 2017 Sep 5]. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S1055937X04000039 Google Scholar
  124. Van Immerseel, F., De Buck, J., Boyen, F., Bohez, L., Pasmans, F., Volf, J., et al. (2004b). Medium-chain fatty acids decrease colonization and invasion through hilA suppression shortly after infection of chickens with Salmonella enterica serovar Enteritidis. Applied and Environmental Microbiology, 70(6), 3582–3587. [cited 2017 Sep 5]. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15184160
  125. Van Immerseel, F., De Buck, J., Pasmans, F., Bohez, L., Boyen, F., Haesebrouck, F., et al. (2004a). Intermittent long-term shedding and induction of carrier birds after infection of chickens early posthatch with a low or high dose of Salmonella Enteritidis. Poultry Science, 83(11), 1911–1916. [cited 2017 Sep 5]. Retrieved from https://academic.oup.com/ps/article-lookup/doi/10.1093/ps/83.11.1911
  126. Van Immerseel, F., Russell, J. B., Flythe, M. D., Gantois, I., Timbermont, L., Pasmans, F., et al. (2006). The use of organic acids to combat Salmonella in poultry: A mechanistic explanation of the efficacy. Avian Pathology, 35(3), 182–188. [cited 2016 Oct 15]. Retrieved from http://www.tandfonline.com/doi/full/10.1080/03079450600711045 Google Scholar
  127. Velge, P., Cloeckaert, A., & Barrow, P. (2005). Emergence of Salmonella epidemics: The problems related to Salmonella enterica serotype Enteritidis and multiple antibiotic resistance in other major serotypes. Veterinary Research, 36, 267–288. [cited 2017 Sep 5]. Retrieved from https://www.vetres.org/articles/vetres/pdf/2005/03/v4058.pdf
  128. Venkitanarayanan, K., Kollanoor-Johny, A., Darre, M. J., Donoghue, A. M., & Donoghue, D. J. (2013). Use of plant-derived antimicrobials for improving the safety of poultry products. Poultry Science, 92(2), 493–501.Google Scholar
  129. Waldroup, A. L. (1996). Contamination of raw poultry with pathogens. World's Poultry Science Journal, 52(1), 20–25. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-22944471495&partnerID=40&md5=aac074e5fa41a0e011d6ae897f349d62 Google Scholar
  130. Wales, A., Breslin, M., Carter, B., Sayers, R., & Davies, R. (2007). A longitudinal study of environmental Salmonella contamination in caged and free-range layer flocks. Avian Pathology, 36(3), 187–197. [cited 2017 Sep 5]. Retrieved from http://www.tandfonline.com/doi/full/10.1080/03079450701338755 Google Scholar
  131. White, D. G., Zhao, S., Sudler, R., Ayers, S., Friedman, S., Chen, S., et al. (2001). The isolation of antibiotic-resistant Salmonella from retail ground meats. The New England Journal of Medicine, 345(16), 1147–1154. [cited 2017 Sep 5]. Retrieved from http://www.nejm.org/doi/abs/10.1056/NEJMoa010315 Google Scholar
  132. Williams, J. E., & Benson, S. T. (1978). Survival of Salmonella Typhimurium in poultry feed and litter at three temperatures. Avian Diseases, 22(4), 742. [cited 2017 Sep 5]. Retrieved from http://www.jstor.org/stable/1589652?origin=crossref
  133. Winter, S. E., Thiennimitr, P., Winter, M. G., Butler, B. P., Huseby, D. L., Crawford, R. W., et al. (2010). Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature, 467(7314), 426–429. [cited 2017 Sep 5]. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20864996 Google Scholar
  134. Wong, M. H. Y., Yan, M., Chan, E. W. C., Biao, K., & Chen, S. (2014). Emergence of clinical Salmonella enterica serovar Typhimurium isolates with concurrent resistance to ciprofloxacin, ceftriaxone, and azithromycin. Antimicrobial Agents and Chemotherapy, 58(7), 3752–3756. [cited 2017 Sep 17]. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24752251
  135. Yang, H., Li, Y. B., & Johnson, M. G. (2001). Survival and death of Salmonella Typhimurium and Campylobacter jejuni in processing water and on chicken skin during poultry scalding and chilling. Journal of Food Protection, 64(6), 770–776.Google Scholar
  136. Yim, L., Betancor, L., Martinez, A., Giossa, G., Bryant, C., Maskell, D., et al. (2010). Differential phenotypic diversity among epidemic-spanning Salmonella enterica serovar Enteritidis isolates from humans or animals. Applied and Environmental Microbiology, 76(20), 6812–6820. [cited 2017 Sep 5]. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20802078
  137. Zhang-Barber, L., Turner, A. K., & Barrow, P. A. (1999). Vaccination for control of Salmonella in poultry. Vaccine, 17(20-21), 2538–2545. [cited 2017 Sep 6]. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0264410X99000602 Google Scholar
  138. Zhao, S., White, D. G., Friedman, S. L., Glenn, A., Blickenstaff, K., Ayers, S. L., et al. (2008). Antimicrobial resistance in Salmonella enterica serovar Heidelberg isolates from retail meats, including poultry, from 2002 to 2006. Applied and Environmental Microbiology, 74(21), 6656–6662. [cited 2017 Sep 6]. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18757574 Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Animal ScienceUniversity of MinnesotaSaint PaulUSA

Personalised recommendations