Skip to main content

Finite Element Algorithms for Computational Biomechanics of the Brain

  • Chapter
  • First Online:
Biomechanics of the Brain

Abstract

In this chapter, we advocate application of explicit dynamics (i.e. with explicit time stepping) finite element analysis as the finite element procedure of choice for computational biomechanics of the brain. Our recommendations regarding specific formulations, algorithms, and computing hardware for such analysis include: (1) application of total Lagrangian formulation of continuum mechanics (where the derivatives with respect to the spatial coordinates can be pre-computed); (2) dynamic relaxation for problems (such as image registration) that require steady-state solution; (3) low order (underintegrated eight-noded hexahedra with hourglass control and four-noded tetrahedra with averaged nodal pressure to alleviate volumetric locking) for construction of finite element meshes of the brain; (4) implementation of the finite element algorithms on graphics processing units (GPUs) to facilitate real-time computation (through parallel processing/multithreading) on commodity hardware. We provide examples of verification of the discussed finite element algorithms against the reference solutions obtained using the well-established non-linear static finite element procedures. We discuss time-consuming generation of patient-specific finite element meshes and deterioration of the solution accuracy when the elements undergo distortion induced by large deformations as the limitations of finite element method in the context of surgical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fressmann, D., Munz, T., Graf, O., Schweizerhof, K.: FE human modelling in crash — aspects of the numerical modelling and current applications in the automotive industry. In: DYNAmore GmbH, Frankthenhal, pp. F-I-23 – F-I-34 (2007)

    Google Scholar 

  2. Takhounts, E.G., Eppinger, R.H., Campbell, J.Q., Tannous, R.E., Power, E.D., Shook, L.S.: On the development of the SIMon finite element head model. Stapp Car Crash J. 47, 107–133 (2003)

    Google Scholar 

  3. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester (2006)

    MATH  Google Scholar 

  4. Bathe, K.-J.: Finite Element Procedures. Prentice-Hall, Upper Saddle River, NJ, USA (1996)

    Google Scholar 

  5. Livermore Software Technology Coporation LSTC: LS-DYNA Theory Manual, http://www.lstc.com/download/manuals (2018)

  6. Pacific Engineering Systems International (ESI): PAM-SAFE http://www.esi.com.au/Software/PAM-SAFE.html (2018)

  7. Altair: RADIOSS Technical Papers, https://altairhyperworks.com/ResourceLibrary.aspx? category=Technical%20Papers&altair_products=RADIOSS (2018)

  8. Dassault Systèmes Simulia Corporation: SIMULIA User Assistance 2018: ABAQUS (2018)

    Google Scholar 

  9. Baumann, R., Glauser, D., Tappy, D., Baur, C., Clavel, R.: Force feedback for virtual reality based minimally invasive surgery simulator. Stud. Health Technol. Inform. 29, 564–579 (1996)

    Google Scholar 

  10. Cover, S.A., Ezquerra, N.F., O’Brien, J.F., Rowe, R., Gadacz, T., Palm, E.: Interactively deformable models for surgery simulation. Computer Graphics and Applications, IEEE. 13, 68–75 (1993)

    Article  Google Scholar 

  11. Kuhnapfel, U., Çakmak, H.K., Maaß, H.: Endoscopic surgery training using virtual reality and deformable tissue simulation. Comput. Graph. 24, 671–682 (2000)

    Article  Google Scholar 

  12. Nimura, Y., Di Qu, J., Hayashi, Y., Oda, M., Kitasaka, T., Hashizume, M., Misawa, K., Mori, K.: Pneumoperitoneum simulation based on mass-spring-damper models for laparoscopic surgical planning. J. Med. Imag. 2, 044004 (2015)

    Article  Google Scholar 

  13. Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. Vis. Comput. 16, 437–452 (2000)

    Article  Google Scholar 

  14. Bro-Nielsen, M.: Finite element modeling in surgery simulation. Proc. IEEE. 86, 490–503 (1998)

    Article  Google Scholar 

  15. Bro-Nielsen, M., Cotin, S.: Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comput. Graphics Forum. 15, 57–66 (1996)

    Article  Google Scholar 

  16. DiMaio, S.P., Salcudean, S.E.: Interactive simulation of needle insertion models. IEEE Trans. Biomed. Eng. 52, 1167–1179 (2005)

    Article  Google Scholar 

  17. Warfield, S.K., Talos, F., Tei, A., Bharatha, A., Nabavi, A., Ferrant, M., Black, P.M., Jolesz, F.A., Kikinis, R.: Real-time registration of volumetric brain MRI by biomechanical simulation of deformation during image guided neurosurgery. Comput. Vis. Sci. 5, 3–11 (2002)

    Article  Google Scholar 

  18. Dumpuri, P., Thompson, R.C., Cao, A., Ding, S., Garg, I., Dawant, B.M., Miga, M.I.: A fast and efficient method to compensate for brain shift for tumor resection therapies measured between pre-operative and post-operative tomograms. I.E.E.E. Trans. Biomed. Eng. 57, 1285–1296 (2010)

    Google Scholar 

  19. Dumpuri, P., Thompson, R.C., Dawant, B.M., Cao, A., Miga, M.I.: An atlas-based method to compensate for brain shift: preliminary results. Med. Image Anal. 11, 128–145 (2007)

    Article  Google Scholar 

  20. Roberts, D.W., Hartov, A., Kennedy, F.E., Miga, M.I., Paulsen, K.D.: Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases. Neurosurgery. 43, 749–758 (1998)

    Article  Google Scholar 

  21. Wittek, A., Dutta-Roy, T., Taylor, Z., Horton, A., Washio, T., Chinzei, K., Miller, K.: Subject-specific non-linear biomechanical model of needle insertion into brain. Comput. Methods Biomech. Biomed. Engin. 11, 135–146 (2008)

    Article  Google Scholar 

  22. Wittek, A., Hawkins, T., Miller, K.: On the unimportance of constitutive models in computing brain deformation for image-guided surgery. Biomech. Model. Mechanobiol. 8, 77–84 (2009)

    Article  Google Scholar 

  23. Belytschko, T.: A survey of numerical methods and computer programs for dynamic structural analysis. Nucl. Eng. Des. 37, 23–34 (1976)

    Article  Google Scholar 

  24. Yang, K.H.: Basic Finite Element Method as Applied to Injury Biomechanics. Academic Press, Cambridge, MA, USA (2018)

    Chapter  Google Scholar 

  25. Cook, R.D., Malkus, D.S., Plesha, M.E.: Finite elements in dynamics and vibrations. In: Concepts and Applications of Finite Element Analysis, pp. 367–428. Wiley, New York (1989)

    MATH  Google Scholar 

  26. Hughes, T.J.R.: Analysis of transient algorithms with particular reference to stability behavior. In: Belytschko, T., Hughes, T.J.R. (eds.) Computational Methods for Transient Analysis, vol. 1, pp. 67–155. North-Holland, Amsterdam (1983)

    Google Scholar 

  27. Belytschko, T.: An overview of semidiscretization and time integration procedures. In: Belytschko, T., Hughes, T.J.R. (eds.) Computational Methods for Transient Analysis, vol. 1, pp. 1–66. North-Holland, Amsterdam (1983)

    Google Scholar 

  28. Olovsson, L., Simonsson, K., Unosson, M.: Selective mass scaling for explicit finite element analyses. Int. J. Numer. Methods Eng. 63, 1436–1445 (2005)

    Article  Google Scholar 

  29. Pan, F., Zhu, J., Helminen, A.O., Vatanparast, F.: Three point bending analysis of a mobile phone using LS-DYNA explicit integration method. In: Mindle, W.L. (ed.) 9th International LS-DYNA Users Conference. Livermore Software Technology Corporation, Dearborn, MI, USA (2006)

    Google Scholar 

  30. Majumder, S., Roychowdhury, A., Subrata, P.: Three-dimensional finite element simulation of pelvic fracture during side impact with pelvis-femur-soft tissue complex. Int. J. Crashworthiness. 13, 313–329 (2008)

    Article  Google Scholar 

  31. Cocchetti, G., Pagani, M., Perego, U.: Selective mass scaling and critical time-step estimate for explicit dynamics analyses with solid-shell elements. Comput. Struct. 127, 39–52 (2013)

    Article  Google Scholar 

  32. Flanagan, D.P., Belytschko, T.: A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int. J. Numer. Methods Eng. 17, 679–706 (1981)

    Article  Google Scholar 

  33. Cifuentes, A.O., Kalbag, A.: A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis. Finite Elem. Anal. Des. 12, 313–318 (1992)

    Article  Google Scholar 

  34. Cook, R.D., Malkus, D.S., Plesha, M.E.: Concepts and Applications of Finite Element Analysis. Wiley, New York (1989)

    MATH  Google Scholar 

  35. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, Mineola (2000)

    MATH  Google Scholar 

  36. Rojek, J., Oñate, E., Postek, E.: Application of explicit FE codes to simulation of sheet and bulk metal forming processes. J. Mater. Process. Technol. 80-81, 620–627 (1998)

    Article  Google Scholar 

  37. Miller, K., Joldes, G., Lance, D., Wittek, A.: Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Commun. Numer. Methods Eng. 23, 121–134 (2007)

    Article  MathSciNet  Google Scholar 

  38. Joldes, G.R., Wittek, A., Miller, K.: Non-locking tetrahedral finite element for surgical simulation. Commun. Numer. Methods Eng. 25, 827–836 (2008)

    Article  MathSciNet  Google Scholar 

  39. Underwood, P.: Dynamic relaxation. In: Belytschko, T., Hughes, T.J.R. (eds.) Computational Methods for Transient Analysis, vol. 1, pp. 245–265. New-Holland, Amsterdam (1983)

    Google Scholar 

  40. Joldes, G.R., Wittek, A., Miller, K.: Computation of intra-operative brain shift using dynamic relaxation. Comput. Methods Appl. Mech. Eng. 198, 3313–3320 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  41. Isaacson, E.: Analysis of Numerical Methods. Wiley, New York (1966)

    MATH  Google Scholar 

  42. Joldes, G.R., Wittek, A., Miller, K.: An adaptive dynamic relaxation method for solving nonlinear finite element problems. Application to brain shift estimation. Int. J. Numer. Method. Biomed. Eng. 27, 173–185 (2011)

    Article  MathSciNet  Google Scholar 

  43. Miller, K.: Biomechanics of the Brain for Computer Integrated Surgery. Publishing House of Warsaw University of Technology, Warsaw (2002)

    Google Scholar 

  44. Miller, K., Chinzei, K.: Mechanical properties of brain tissue in tension. J. Biomech. 35, 483–490 (2002)

    Article  Google Scholar 

  45. Miller, K., Chinzei, K., Orssengo, G., Bednarz, P.: Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J. Biomech. 33, 1369–1376 (2000)

    Article  Google Scholar 

  46. Miller, K.: Constitutive modelling of abdominal organs. J. Biomech. 33, 367–373 (2000)

    Article  Google Scholar 

  47. Miller, K., Chinzei, K.: Constitutive modelling of brain tissue; Experiment and Theory. J. Biomech. 30, 1115–1121 (1997)

    Article  Google Scholar 

  48. Bilston, L.E., Liu, Z., Phan-Tien, N.: Linear viscoelastic properties of bovine brain tissue in shear. Biorheology. 34, 377–385 (1997)

    Article  Google Scholar 

  49. Margulies, S.S., Thibault, L.E., Gennarelli, T.A.: Physical model simulations of brain injury in the primate. J. Biomech. 23, 823–836 (1990)

    Article  Google Scholar 

  50. Bonet, J., Burton, A.J.: A simple averaged nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications. Commun. Numer. Methods Eng. 14, 437–449 (1998)

    Article  Google Scholar 

  51. Bonet, J., Marriott, H., Hassan, O.: An averaged nodal deformation gradient linear tetrahedral element for large strain explicit dynamic applications. Commun. Numer. Methods Eng. 17, 551–561 (2001)

    Article  Google Scholar 

  52. Zienkiewicz, O.C., Rojek, J., Taylor, R.L., Pastor, M.: Triangles and tetrahedra in explicit dynamic codes for solids. Int. J. Numer. Methods Eng. 43, 565–583 (1998)

    Article  MathSciNet  Google Scholar 

  53. Dohrmann, C.R., Heinstein, M.W., Jung, J., Key, S.W., Witkowski, W.R.: Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes. Int. J. Numer. Methods Eng. 47, 1549–1568 (2000)

    Article  Google Scholar 

  54. Joldes, G.R., Wittek, A., Miller, K.: Non-locking tetrahedral finite element for surgical simulation. Commun. Numer. Methods Eng. 25, 827–836 (2009)

    Article  MathSciNet  Google Scholar 

  55. Joldes, G.R., Wittek, A., Miller, K.: An efficient hourglass control implementation for the uniform strain hexahedron using the Total Lagrangian formulation. Commun. Numer. Methods Eng. 23, 315–323 (2008)

    MathSciNet  MATH  Google Scholar 

  56. Hallquist, J.O., Goudreau, G.L., Benson, D.J.: Sliding interfaces with contact-impact in large-scale Lagrangian computations. Comput. Methods Appl. Mech. Eng. 51, 107–137 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  57. Doghri, I., Muller, A., Taylor, R.L.: A general three-dimensional contact procedure for implicit finite element codes. Eng. Comput. 15, 233–259 (1998)

    Article  Google Scholar 

  58. Stewart, J.R., Gullerud, A.S., Heinstein, M.W.: Solution verification for explicit transient dynamics problems in the presence of hourglass and contact forces. Comput. Methods Appl. Mech. Eng. 195, 1499–1516 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  59. Sauvé, R.G., Morandin, G.D.: Simulation of contact in finite deformation problems – algorithm. Int. J. Mech. Mater. Des. 1, 287–316 (2004)

    Article  Google Scholar 

  60. Dassault Systèmes Simulia Corporation: ABAQUS Theory Guide: Version 6.14 (2014)

    Google Scholar 

  61. Joldes, G., Wittek, A., Miller, K., Morriss, L.: Realistic and efficient brain-skull interaction model for brain shift computation. In: Computational Biomechanics for Medicine III, pp. 95–105. http://www.cbm.mech.uwa.edu.au/CBM2008/, (2008)

  62. NVIDIA: NVIDIA’s Next Generation CUDA Compute Architecture: Fermi, http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_ Whitepaper.pdf (2009)

  63. Khronos: Open CL https://www.khronos.org/opencl/ (2018)

  64. Joldes, G.R., Wittek, A., Miller, K.: Real-time nonlinear finite element computations on GPU - application to neurosurgical simulation. Comput. Methods Appl. Mech. Eng. 199, 3305–3314 (2010)

    Article  ADS  Google Scholar 

  65. Comas, O.: Real-time Soft Tissue Modelling on GPU for Medical Simulation. Doctoral School of Engineering Science, PhD Thesis. Université des Sciences et Technologie de Lille Lille, France (2011)

    Google Scholar 

  66. Courtecuisse, H., Allard, J., Kerfriden, P., Bordas, S.P.A., Cotin, S., Duriez, C.: Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med. Image Anal. 18, 394–410 (2014)

    Article  Google Scholar 

  67. The American Society of Mechanical Engineers ASME, Standards Committee on Verification and Validation in Computational Solid Mechanics PTC 60/V&V 10: Guide for Verification and Validation in Computational Solid Mechanics. http://cstools.asme.org/csconnect/pdf/CommitteeFiles/24816.pdf (2006)

  68. Babuska, I., Oden, J.T.: Verification and validation in computational engineering and science: basic concepts. Comput. Methods Appl. Mech. Eng. 193, 4057–4066 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  69. Joldes, G.R., Wittek, A., Miller, K.: An efficient hourglass control implementation for the uniform strain hexahedron using the Total Lagrangian formulation. Commun. Numer. Methods Eng. 24, 1315 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  70. Waldron, K.J., Kinzel, G.L.: Kinematics, Dynamics, and Design of Machinery. Wiley, New York (1999)

    Google Scholar 

  71. Wittek, A., Miller, K., Kikinis, R., Warfield, S.K.: Patient-specific model of brain deformation: application to medical image registration. J. Biomech. 40, 919–929 (2007)

    Article  Google Scholar 

  72. NVIDIA: Quadro on Desktop Workstations https://www.nvidia.com/en-us/design-visualization/quadro-desktop-gpus/

  73. Wittek, A., Grosland, N., Joldes, G., Magnotta, V., Miller, K.: From finite element meshes to clouds of points: a review of methods for generation of computational biomechanics models for patient-specific applications. Ann. Biomed. Eng. 44, 3–15 (2016)

    Article  Google Scholar 

  74. Horton, A., Wittek, A., Joldes, G.R., Miller, K.: A meshless Total Lagrangian explicit dynamics algorithm for surgical simulation. Int. J. Numer. Methods Biomed. Eng. 26, 977–998 (2010)

    Article  Google Scholar 

  75. Miller, K., Horton, A., Joldes, G.R., Wittek, A.: Beyond finite elements: a comprehensive, patient-specific neurosurgical simulation utilizing a meshless method. J. Biomech. 45, 2698–2701 (2012)

    Article  Google Scholar 

  76. Zhang, G.Y., Wittek, A., Joldes, G.R., Jin, X., Miller, K.: A three-dimensional nonlinear meshfree algorithm for simulating mechanical responses of soft tissue. Eng. Anal. Bound. Elem. 42, 60–66 (2014)

    Article  MathSciNet  Google Scholar 

  77. Li, M., Miller, K., Joldes, G.R., Kikinis, R., Wittek, A.: Biomechanical model for computing deformations for whole-body image registration: A meshless approach. Int. J. Numer. Method Biomed. Eng. 32, e02771–e02718 (2016)

    Article  Google Scholar 

  78. Joldes, G.R., Bourantas, G., Zwick, B., Chowdhury, H., Wittek, A., Agrawal, S., Mountris, K., Hyde, D., Warfield, S.K., Miller, K.: Suite of meshless algorithms for accurate computation of soft tissue deformation for surgical simulation. Med. Image Anal. 56, 152–171 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This chapter uses the published results of research supported by the funding from the Australian Government through the Australian Research Council (ARC) (grants DP0343112, DP0664534, DP1092893, and LX0560460), National Health and Medical Research Council (NHMRC) (project grants no. APP1006031 and APP1144519) and National Institutes of Health (NIH) (grant 1-R03-CA126466-01A1). We also acknowledge funding from the Australian Government through the Australian Research Council (Discovery Project grant DP160100714).

We thank our collaborators Dr. Ron Kikinis and Dr. Simon K. Warfield of Harvard Medical School (Boston, MA, USA) and Dr. Kiyoyuki Chinzei and Dr. Toshikatsu Washio of Surgical Assist Technology Group of AIST (Tsukuba, Japan) for help in various aspects of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Wittek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wittek, A., Joldes, G.R., Miller, K. (2019). Finite Element Algorithms for Computational Biomechanics of the Brain. In: Miller, K. (eds) Biomechanics of the Brain. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-04996-6_10

Download citation

Publish with us

Policies and ethics