Degradation of Bioresorbable Composites: Calcium Carbonate Case Studies

  • Ismael Moreno-GomezEmail author
Part of the Springer Theses book series (Springer Theses)


This chapter includes the analysis of the degradation of calcium carbonate (CC) composites employing the CC composites degradation model described in Sect.  3.2.3. In addition, it presents a second analysis of the experimental data presented in Chap.  6 using an extended method which takes advantage of the detailed nature of the data. Chapter  7 is the third and last chapter dealing with the use of the ceramic-specific degradation models, derived from the general modelling framework, to analyse the degradation of biocomposites and thus, presents a structure similar to Chaps.  4 and  5. The first section, Sect. 7.1, presents the calcium carbonate composite degradation data harvested from literature. Section 7.2 reports the different types of calcium carbonate encountered in the harvested data and the values of the ceramic-dependent constant for each one of them. Similarly to Chap.  5, the values of the polymer-dependent constants are not included. Those values can be found in Sect.  4.3. The values at the time origin of the variables employed in the CC composites degradation model are included in Sect. 7.3. The results of the degradation simulations are presented in Sect. 7.4, followed by the discussion in Sect. 7.5. Section 7.6 contains the conclusions derived from the different analyses of the degradation of calcium carbonate composites. The detailed analysis of Chap.  6 data is presented in Sect. 7.7. And lastly, in addition to the calcium carbonate specific conclusions, Sect. 7.8 contains a summary of the core insights derived from the composite degradation analyses carried out in Chaps  4,  5 and  7 with the three ceramic-specific computational models.


  1. 1.
    Wakita, T., Nakamura, J., Ota, Y., Obata, A., Kasuga, T., & Ban, S. (2011). Effect of preparation route on the degradation behavior and ion releasability of siloxane-poly(lactic acid)-vaterite hybrid nonwoven fabrics for guided bone regeneration. Dental Materials Journal, 30(2), 232–238.Google Scholar
  2. 2.
    Liu, Y., Huang, Q., Kienzle, A., Müller, W., & Feng, Q. (2014). In vitro degradation of porous PLLA/pearl powder composite scaffolds. Materials Science and Engineering: C, 38, 227–234.Google Scholar
  3. 3.
    Li, S., & Vert, M. (1996). Hydrolytic degradation of coral/poly(DL-lactic acid) bioresorbable material. Journal of Biomaterials Science, Polymer Edition, 7(9), 817–827.Google Scholar
  4. 4.
    Ara, M., Watanabe, M., & Imai, Y. (2002). Effect of blending calcium compounds on hydrolytic degradation of poly(DL-lactic acid-co-glycolic acid). Biomaterials, 23(12), 2479–2483.Google Scholar
  5. 5.
    Tsunoda, M. (2003). Degradation of poly(DL-lactic acid-co-glycolic acid) containing calcium carbonate and hydroxyapatite fillers-effect of size and shape of the fillers. Dental Materials Journal, 22(3), 371–382.CrossRefGoogle Scholar
  6. 6.
    Agrawal, C. M., & Athanasiou, K. A. (1997). Technique to control pH in vicinity of biodegrading PLA-PGA implants. Journal of Biomedical Materials Research, 38(2), 105–114.Google Scholar
  7. 7.
    Cotton, N. J., Egan, M. J., & Brunelle, J. E. (2008). Composites of poly(DL-lactide-co-glycolide) and calcium carbonate: In vitro evaluation for use in orthopedic applications. Journal of Biomedical Materials Research Part A, 85(1), 195–205.Google Scholar
  8. 8.
    Pan, J., Han, X., Niu, W., & Cameron, R. E. (2011). A model for biodegradation of composite materials made of polyesters and tricalcium phosphates. Biomaterials, 32(9), 2248–2255.CrossRefGoogle Scholar
  9. 9.
    Morse, J. W., Arvidson, R. S., & Lüttge, A. (2007). Calcium carbonate formation and dissolution. Chemical Reviews, 107(2), 342–381.CrossRefGoogle Scholar
  10. 10.
    Graf, D. (1961). Crystallographic tables for the rhombohedral carbonates. American Mineralogist, 46(11–2), 1283–1316.Google Scholar
  11. 11.
    De Villiers, J. P. R. (1967). The crystal structures of aragonite, strontianite, and witherite. Ph.D. thesis, University of Illinois at Urbana-Champaign.Google Scholar
  12. 12.
    Kamhi, S. R. (1963). On the structure of vaterite, \({\rm {CaCO}_{3}}\). Acta Crystallographica, 16(8), 770–772.CrossRefGoogle Scholar
  13. 13.
    Harned, H. S., & Davis, R, Jr. (1943). The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50\(^\circ \). Journal of the American Chemical Society, 65(10), 2030–2037.CrossRefGoogle Scholar
  14. 14.
    Harned, H. S., & Scholes, S. R, Jr. (1941). The ionization constant of HCO\(_3^{-}\) from 0 to 50\(^\circ \). Journal of the American Chemical Society, 63(6), 1706–1709.CrossRefGoogle Scholar
  15. 15.
    PubChem (2005a). CID: 10112. Retrieved September 1, 2016, from
  16. 16.
    Plummer, L. N., & Busenberg, E. (1982). The solubilities of calcite, aragonite and vaterite in CO\(_{2}\)-H\(_{2}\)O solutions between 0 and 90\(^\circ \)C, and an evaluation of the aqueous model for the system CaCO\(_{3}\)-CO\(_{2}\)-H\(_{2}\)O. Geochimica et Cosmochimica Acta, 46(6), 1011–1040.CrossRefGoogle Scholar
  17. 17.
    Mindat Online Database (2016b). Calcite. Retrieved September 1, 2016, from
  18. 18.
    Mindat Online Database (2016a). Aragonite. Retrieved September 1, 2016, from
  19. 19.
    Mindat Online Database (2016c). Vaterite. Retrieved September 1, 2016, from
  20. 20.
    Sjöberg, E. L., & Rickard, D. T. (1984). Temperature dependence of calcite dissolution kinetics between 1 and \(62^{\circ }\)C at pH 2.7–8.4 in aqueous solutions. Geochimica et Cosmochimica Acta, 48(3), 485–493.CrossRefGoogle Scholar
  21. 21.
    Neuendorf, R., Saiz, E., Tomsia, A., & Ritchie, R. (2008). Adhesion between biodegradable polymers and hydroxyapatite: Relevance to synthetic bone-like materials and tissue engineering scaffolds. Acta Biomaterialia, 4(5), 1288–1296.CrossRefGoogle Scholar
  22. 22.
    Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23), 2335–2346.CrossRefGoogle Scholar
  23. 23.
    Li, H., & Chang, J. (2005). pH-compensation effect of bioactive inorganic fillers on the degradation of PLGA. Composites Science and Technology, 65(14), 2226–2232.CrossRefGoogle Scholar
  24. 24.
    Feely, R., Sabine, C., Lee, K., Millero, F., Lamb, M., Greeley, D., et al. (2002). In situ calcium carbonate dissolution in the Pacific Ocean. Global Biogeochemical Cycles, 16(4), 91-1.CrossRefGoogle Scholar
  25. 25.
    Fu, K., Pack, D. W., Klibanov, A. M., & Langer, R. (2000). Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharmaceutical Research, 17(1), 100–106.CrossRefGoogle Scholar
  26. 26.
    Blanco, D., & Alonso, M. J. (1998). Protein encapsulation and release from poly(lactide-co-glycolide) microspheres: Effect of the protein and polymer properties and of the co-encapsulation of surfactants. European Journal of Pharmaceutics and Biopharmaceutics, 45(3), 285–294.CrossRefGoogle Scholar
  27. 27.
    Blanco, M. D., Sastre, R. L., Teijón, C., Olmo, R., & Teijón, J. M. (2006). Degradation behaviour of microspheres prepared by spray-drying poly(D, L-lactide) and poly(D, L-lactide-co-glycolide) polymers. International Journal of Pharmaceutics, 326(1), 139–147.CrossRefGoogle Scholar
  28. 28.
    Dunne, M., Corrigan, O., & Ramtoola, Z. (2000). Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials, 21(16), 1659–1668.CrossRefGoogle Scholar
  29. 29.
    Musyanovych, A., & Landfester, K. (2012). Biodegradable polyester-based nanoparticle formation by miniemulsion technique. Material Matters, 7(3), 30–34.Google Scholar
  30. 30.
    Panyam, J., Dali, M. M., Sahoo, S. K., Ma, W., Chakravarthi, S. S., Amidon, G. L., et al. (2003). Polymer degradation and in vitro release of a model protein from poly (D, L-lactide-co-glycolide) nano-and microparticles. Journal of Controlled Release, 92(1), 173–187.CrossRefGoogle Scholar
  31. 31.
    Samadi, N., Abbadessa, A., Di Stefano, A., Van Nostrum, C., Vermonden, T., Rahimian, S., et al. (2013). The effect of lauryl capping group on protein release and degradation of poly(D, L-lactic-co-glycolic acid) particles. Journal of Controlled Release, 172(2), 436–443.CrossRefGoogle Scholar
  32. 32.
    Barrett, C. E., & Cameron, R. E. (2014). X-ray microtomographic analysis of \(\alpha \)-tricalcium phosphate-poly(lactic-co-glycolic) acid nanocomposite degradation. Polymer, 55(16), 4041–4049.CrossRefGoogle Scholar
  33. 33.
    Barrett, C. E. (2013). The degradation behaviour of tricalcium phosphate - poly(lactide-co-glycolide) nanocomposites. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.Google Scholar
  34. 34.
    Yang, Z. (2009). Development and characterisation of bioactive, bioresorbable  \(\upalpha \)-tricalcium phosphate/poly(D,L-lactide-co-glycolide) nanocomposites for bone substitution and fixation. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.Google Scholar
  35. 35.
    Yang, Z., Best, S. M., & Cameron, R. E. (2009). The influence of \(\alpha \)-tricalcium phosphate nanoparticles and microparticles on the degradation of poly(D, L-lactide-co-glycolide). Advanced Materials, 21(38–39), 3900–3904.CrossRefGoogle Scholar
  36. 36.
    Bennett, S. M. (2012). Degradation mechanisms of PLGA/\(\upalpha \)-TCP composites for orthopaedic applications. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations