Degradation of Bioresorbable Composites: Hydroxyapatite Case Studies

  • Ismael Moreno-GomezEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter, the analysis of the degradation of hydroxyapatite (HA) composites using the HA composites degradation model, described in Sect.  3.2.2, is presented. The chapter follows, with minor changes, the structure of Chap.  4. Firstly, in Sect. 5.1, the HA composite degradation data harvested from literature are reported, including the necessary composite degradation input information employed by the computational model. The second section, Sect. 5.2, includes information about the different types of hydroxyapatite (HA) found in the harvested degradation data and their associated values for the ceramic-dependent constants.


  1. 1.
    Wang, Y., Liu, L., & Guo, S. (2010b). Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro. Polymer Degradation and Stability, 95(2), 207–213.CrossRefGoogle Scholar
  2. 2.
    Huang, J., Xiong, J., Liu, J., Zhu, W., & Wang, D. (2013). Investigation of the in vitro degradation of a novel polylactide/nanohydroxyapatite composite for artificial bone. Journal of Nanomaterials, 2013, 3.Google Scholar
  3. 3.
    Wang, Z., Wang, Y., Ito, Y., Zhang, P., & Chen, X. (2016). A comparative study on the in vivo degradation of poly(L-lactide) based composite implants for bone fracture fixation. Scientific Reports, 6.Google Scholar
  4. 4.
    Zhou, H., Touny, A. H., & Bhaduri, S. B. (2011). Fabrication of novel PLA/CDHA bionanocomposite fibers for tissue engineering applications via electrospinning. Journal of Materials Science: Materials in Medicine, 22(5), 1183–1193.Google Scholar
  5. 5.
    Verheyen, C., De Wijn, J., Van Blitterswijk, C., & De Groot, K. (1992). Evaluation of hydroxylapatite/poly(L-lactide) composites: Mechanical behavior. Journal of Biomedical Materials Research, 26(10), 1277–1296.CrossRefGoogle Scholar
  6. 6.
    Verheyen, C., Klein, C., de Blieck-Hogervorst, J., Wolke, J., Van Blitterswijn, C., & De Groot, K. (1993). Evaluation of hydroxylapatite/poly(L-lactide) composites: Physico-chemical properties. Journal of Materials Science: Materials in Medicine, 4(1), 58–65.Google Scholar
  7. 7.
    Díaz, E., Sandonis, I., Puerto, I., & Ibáñez, I. (2014). In vitro degradation of PLLA/nHA composite scaffolds. Polymer Engineering and Science, 54(11), 2571–2578.CrossRefGoogle Scholar
  8. 8.
    Shikinami, Y., & Okuno, M. (1999). Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics. Biomaterials, 20(9), 859–877.CrossRefGoogle Scholar
  9. 9.
    Furukawa, T., Matsusue, Y., Yasunaga, T., Shikinami, Y., Okuno, M., & Nakamura, T. (2000). Biodegradation behavior of ultra-high-strength hydroxyapatite/poly(L-lactide) composite rods for internal fixation of bone fractures. Biomaterials, 21(9), 889–898.CrossRefGoogle Scholar
  10. 10.
    Ishii, S., Tamura, J., Furukawa, T., Nakamura, T., Matsusue, Y., Shikinami, Y., et al. (2003). Long-term study of high-strength hydroxyapatite/poly(L-lactide) composite rods for the internal fixation of bone fractures: A 2-4-year follow-up study in rabbits. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 66(2), 539–547.CrossRefGoogle Scholar
  11. 11.
    Shikinami, Y., & Okuno, M. (2001). Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly L-lactide (PLLA). Part II: Practical properties of miniscrews and miniplates. Biomaterials, 22(23), 3197–3211.CrossRefGoogle Scholar
  12. 12.
    Deng, X., Sui, G., Zhao, M., Chen, G., & Yang, X. (2007). Poly(L-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds prepared by electrospinning. Journal of Biomaterials Science, Polymer Edition, 18(1), 117–130.CrossRefGoogle Scholar
  13. 13.
    Sui, G., Yang, X., Mei, F., Hu, X., Chen, G., Deng, X., et al. (2007). Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. Journal of Biomedical Materials Research Part A, 82(2), 445–454.CrossRefGoogle Scholar
  14. 14.
    Xu, X., Chen, X., Liu, A., Hong, Z., & Jing, X. (2007). Electrospun poly(L-lactide)-grafted hydroxyapatite/poly(L-lactide) nanocomposite fibers. European Polymer Journal, 43(8), 3187–3196.CrossRefGoogle Scholar
  15. 15.
    Rakmae, S., Lorprayoon, C., Ekgasit, S., & Suppakarn, N. (2013). Influence of heat-treated bovine bone-derived hydroxyapatite on physical properties and in vitro degradation behavior of poly(lactic acid) composites. Polymer-Plastics Technology and Engineering, 52(10), 1043–1053.CrossRefGoogle Scholar
  16. 16.
    Rakmae, S., Ruksakulpiwat, Y., Sutapun, W., & Suppakarn, N. (2012). Effect of silane coupling agent treated bovine bone based carbonated hydroxyapatite on in vitro degradation behavior and bioactivity of PLA composites. Materials Science and Engineering: C, 32(6), 1428–1436.CrossRefGoogle Scholar
  17. 17.
    Van der Meer, S., De Wijn, J., & Wolke, J. (1996). The influence of basic filler materials on the degradation of amorphous D-and L-lactide copolymer. Journal of Materials Science: Materials in Medicine, 7(6), 359–361.Google Scholar
  18. 18.
    Zou, B., Chen, X., Zhi, W., Liu, Y., Cui, W., Hu, S., et al. (2012). Promoted healing of femoral defects with in situ grown fibrous composites of hydroxyapatite and poly(DL-lactide). Journal of Biomedical Materials Research Part A, 100(6), 1407–1418.CrossRefGoogle Scholar
  19. 19.
    Zou, B., Li, X., Zhuang, H., Cui, W., Zou, J., & Chen, J. (2011). Degradation behaviors of electrospun fibrous composites of hydroxyapatite and chemically modified poly(DL-lactide). Polymer Degradation and Stability, 96(1), 114–122.CrossRefGoogle Scholar
  20. 20.
    Hasegawa, S., et al. (2005). In vivo evaluation of a porous hydroxyapatite/poly-DL-lactide composite for use as a bone substitute. Journal of Biomedical Materials Research Part A, 75(3), 567–579.CrossRefGoogle Scholar
  21. 21.
    Chen, L., Tang, C. Y., Tsui, C. P., et al. (2013). Mechanical properties and in vitro evaluation of bioactivity and degradation of dexamethasone-releasing poly-D-L-lactide/nano-hydroxyapatite composite scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 22, 41–50.CrossRefGoogle Scholar
  22. 22.
    Hile, D. D., Doherty, S. A., & Trantolo, D. J. (2004). Prediction of resorption rates for composite polylactide/hydroxylapatite internal fixation devices based on initial degradation profiles. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 71(1), 201–205.CrossRefGoogle Scholar
  23. 23.
    Díaz, E., & Puerto, I. (2015). In vitro degradation of PLCL/nHA biodegradable scaffolds. Polymer-Plastics Technology and Engineering, 54(6), 556–564.CrossRefGoogle Scholar
  24. 24.
    Ural, E., Kesenci, K., Fambri, L., Migliaresi, C., & Piskin, E. (2000). Poly(D, L-cactide/\(\varepsilon \)-caprolactone)/hydroxyapatite composites. Biomaterials, 21(21), 2147–2154.Google Scholar
  25. 25.
    Tsunoda, M. (2003). Degradation of poly(DL-lactic acid-co-glycolic acid) containing calcium carbonate and hydroxyapatite fillers-effect of size and shape of the fillers. Dental Materials Journal, 22(3), 371–382.CrossRefGoogle Scholar
  26. 26.
    Li, H., & Chang, J. (2005). pH-compensation effect of bioactive inorganic fillers on the degradation of PLGA. Composites Science and Technology, 65(14), 2226–2232.CrossRefGoogle Scholar
  27. 27.
    Díaz, E., Puerto, I., & Sandonis, I. (2015). The effects of bioactive nanoparticles on the degradation of DLGA. International Journal of Polymeric Materials and Polymeric Biomaterials, 64(1), 38–46.CrossRefGoogle Scholar
  28. 28.
    Agrawal, C. M., & Athanasiou, K. A. (1997). Technique to control pH in vicinity of biodegrading PLA-PGA implants. Journal of Biomedical Materials Research, 38(2), 105–114.CrossRefGoogle Scholar
  29. 29.
    Naik, A., Shepherd, D. V., Shepherd, J. H., Best, S. M., & Cameron, R. E. (2017). The effect of the type of HA on the degradation of PLGA/HA composites. Materials Science and Engineering: C, 70, 824–831.CrossRefGoogle Scholar
  30. 30.
    Naik, A. (2012). Effect of calcination and silanisation on the degradation of poly(DL Lactic-co-glycolic acid)-hydroxyapatite composites. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.Google Scholar
  31. 31.
    Naik, A., Best, S. M., & Cameron, R. E. (2015). The influence of silanisation on the mechanical and degradation behaviour of PLGA/HA composites. Materials Science and Engineering: C, 48, 642–650.CrossRefGoogle Scholar
  32. 32.
    Ege, D. (2012). Mechanical and degradation properties of calcium phosphate/biodegradable polymer composites. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.Google Scholar
  33. 33.
    Ege, D., Best, S., & Cameron, R. (2014). The degradation behaviour of nanoscale HA/PLGA and \(\alpha \)-TCP/PLGA composites. Bioinspired, Biomimetic and Nanobiomaterials, 3, BBN2.Google Scholar
  34. 34.
    Lee, J. B., Kim, S. E., Heo, D. N., Kwon, I. K., & Choi, B.-J. (2010). In vitro characterization of nanofibrous PLGA/gelatin/hydroxyapatite composite for bone tissue engineering. Macromolecular Research, 18(12), 1195–1202.CrossRefGoogle Scholar
  35. 35.
    Liuyun, J., Chengdong, X., Lixin, J., & Lijuan, X. (2013). Degradation behavior of hydroxyapatite/poly(lactic-co-glycolic) acid nanocomposite in simulated body fluid. Materials Research Bulletin, 48(10), 4186–4190.CrossRefGoogle Scholar
  36. 36.
    Ban, S., Watanabe, T., Itoh, T., Nakamura, H., Tsuruta, S., & Kawai, T. (2004). Development of biodegradable composite membrane containing oriented needle-like apatites. Journal of Oral Tissue Engineering, 2(1), 1–13.Google Scholar
  37. 37.
    Rodenas-Rochina, J., Vidaurre, A., Cortázar, I. C., & Lebourg, M. (2015). Effects of hydroxyapatite filler on long-term hydrolytic degradation of PLLA/PCL porous scaffolds. Polymer Degradation and Stability, 119, 121–131.CrossRefGoogle Scholar
  38. 38.
    Ji, W., Yang, F., Seyednejad, H., Chen, Z., Hennink, W. E., Anderson, J. M., et al. (2012). Biocompatibility and degradation characteristics of PLGA-based electrospun nanofibrous scaffolds with nanoapatite incorporation. Biomaterials, 33(28), 6604–6614.CrossRefGoogle Scholar
  39. 39.
    Dunn, A. S., Campbell, P. G., & Marra, K. G. (2001). The influence of polymer blend composition on the degradation of polymer/hydroxyapatite biomaterials. Journal of Materials Science: Materials in Medicine, 12(8), 673–677.Google Scholar
  40. 40.
    Pan, J., Han, X., Niu, W., & Cameron, R. E. (2011). A model for biodegradation of composite materials made of polyesters and tricalcium phosphates. Biomaterials, 32(9), 2248–2255.CrossRefGoogle Scholar
  41. 41.
    Bates, R. G. (1951). First dissociation constant of phosphoric acid from 0\(^\circ \) to 60\(^\circ \)C: Limitations of the electromotive force method for moderately strong acids. Journal of Research of the National Bureau of Standards, 47, 127–134.Google Scholar
  42. 42.
    Bates, R. G., & Acree, S. (1943). pH values of certain phosphate-chloride mixtures, and the second dissociation constant of phosphoric acid from 0\(^\circ \) to 60\(^\circ \)C. Journal of Research of the National Bureau of Standards, 30, 129–155.Google Scholar
  43. 43.
    Vanderzee, C. E., & Quist, A. S. (1961). The third dissociation constant of orthophosphoric acid. The Journal of Physical Chemistry, 65(1), 118–123.CrossRefGoogle Scholar
  44. 44.
    Marshall, W. L., & Franck, E. (1981). Ion product of water substance, 0–1000\(^\circ \)C, 1–10,000 bars new international formulation and its background. Journal of Physical and Chemical Reference Data, 10(2), 295–304.Google Scholar
  45. 45.
    PubChem, (2005). CID: 14781. Retrieved September 1, 2016 from
  46. 46.
    Dorozhkin, S. V., & Epple, M. (2002). Biological and medical significance of calcium phosphates. Angewandte Chemie International Edition, 41(17), 3130–3146.CrossRefGoogle Scholar
  47. 47.
    Ito, A., Maekawa, K., Tsutsumi, S., Ikazaki, F., & Tateishi, T. (1997). Solubility product of OH-carbonated hydroxyapatite. Journal of Biomedical Materials Research Part A, 36(4), 522–528.CrossRefGoogle Scholar
  48. 48.
    Nair, M. (2016). Modelling and study of the dissolution rate of calcium-based fillers in composites for orthopaedic applications. Part III individual research project, Department of Materials Science and Metallurgy, University of Cambridge.Google Scholar
  49. 49.
    Neuendorf, R., Saiz, E., Tomsia, A., & Ritchie, R. (2008). Adhesion between biodegradable polymers and hydroxyapatite: Relevance to synthetic bone-like materials and tissue engineering scaffolds. Acta Biomaterialia, 4(5), 1288–1296.CrossRefGoogle Scholar
  50. 50.
    Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23), 2335–2346.CrossRefGoogle Scholar
  51. 51.
    Bohner, M. (2000). Calcium orthophosphates in medicine: From ceramics to calcium phosphate cements. Injury, 31, D37–D47.CrossRefGoogle Scholar
  52. 52.
    Daculsi, G., LeGeros, R., LeGeros, J., & Mitre, D. (1991). Lattice defects in calcium phosphate ceramics: High resolution TEM ultrastructural study. Journal of Applied Biomaterials, 2(3), 147–152.CrossRefGoogle Scholar
  53. 53.
    LeGeros, R. Z. (1993). Biodegradation and bioresorption of calcium phosphate ceramics. Clinical Materials, 14(1), 65–88.CrossRefGoogle Scholar
  54. 54.
    Christoffersen, J., Christoffersen, M. R., & Kjaergaard, N. (1978). The kinetics of dissolution of calcium hydroxyapatite in water at constant pH. Journal of Crystal Growth, 43(4), 501–511.CrossRefGoogle Scholar
  55. 55.
    Hyakuna, K., Yamamuro, T., Kotoura, Y., Oka, M., Nakamura, T., Kitsugi, T., et al. (1990). Surface reactions of calcium phosphate ceramics to various solutions. Journal of Biomedical Materials Research Part A, 24(4), 471–488.CrossRefGoogle Scholar
  56. 56.
    Yamamuro, T., Shikata, J., Kakutani, Y., Yoshii, S., Kitsugi, T., & Ono, K. (1988). Novel methods for clinical applications of bioactive ceramics. Annals of the New York Academy of Sciences, 523(1), 107–114.CrossRefGoogle Scholar
  57. 57.
    Higashi, S., Yamamuro, T., Nakamura, T., Ikada, Y., Hyon, S.-H., & Jamshidi, K. (1986). Polymer-hydroxyapatite composites for biodegradable bone fillers. Biomaterials, 7(3), 183–187.CrossRefGoogle Scholar
  58. 58.
    Kobayashi, S., & Yamaji, S. (2014). Analytical prediction of hydrolysis behavior of tricalcium phosphate/poly-L-lactic acid composites in simulated body environment. Advanced Composite Materials, 23(3), 211–223.CrossRefGoogle Scholar
  59. 59.
    Lam, C. X., Hutmacher, D. W., Schantz, J.-T., Woodruff, M. A., & Teoh, S. H. (2009). Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. Journal of Biomedical Materials Research Part A, 90(3), 906–919.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations